
MALCOLMJS: A BROWSER-BASED GRAPHICAL USER INTERFACE
I. J. Gillingham, T. Cobb

Diamond Light Source, Oxfordshire, UK

Abstract
A browser-based graphical user interface has been

developed at Diamond. It is known as MalcolmJS as

it communicates using Diamond's Malcolm Middleware

protocol. The original goal was to communicate, via

Websockets with a PandABox [1] in order to allow a user

to examine and set attributes of numerous functional blocks

within the instrument. With the continuing maturity of

the Javascript language, in particular the release of ES6,

along with the availability of off-the-shelf reactive open-

source Javascript libraries, such as Facebook's React and

Node.js, a rich set of tools and frameworks have entered

the arena of user interface development suitable for control

systems. This paper describes the design decisions based

on these tools, experiences and lessons learned during

and after the development process and the possibilities for

future development as a generic, adaptable framework for

instrument and control system user interfaces.

INTRODUCTION
In 2016/17, Diamond (in collaboration with SOLEIL)

developed a digital signal level converter and position

capture unit, named PandABox. PandABox consists of a

number of static functional blocks defining functionality

such as pulse stretching or position compare that can we

wired together by an end user at run-time. An ASCII based

TCP protocol allows control system access to the device, but

a graphical interface was desired to allow end users to easily

visualize the wiring of these functional blocks. It was also

deemed necessary for an end user to be able to configure a

PandABox without having to install any software on their

computer. Having developed a tightly specified middle

layer service named “Malcolm” [2], which allows high level

configure/run control of control system components, the

next stage was the design of a companion browser based

user interface that has been named MalcolmJS.

REQUIREMENTS
Malcolm objects form a network of parent child relation-

ships with duplicated nodes. For example, the same motor

controller is likely to be used in many scans. A typical tree

of objects might look like that shown in Fig. 1.

The bold items correspond to blocks, everything else is

an attribute. The Palette items are generated by the User

Interface(UI) giving a list of blocks from which the user can

drag and drop (Fig. 2).

Outline UI Requirements
The external devices have diverse functionality; Mal-

colmJS must, therefore interrogate the attached device(s) for

PandABox1 Layout

PCOMP1

inp

out

enable

active

SEQ1

enable

table

Figure 1: Example block and attributes tree structure.

Figure 2: Proposed GUI.

information on all the available function blocks, attributes

and associated meta-data. The collection of internal

resources then being listed in a “palette” in the right-hand

side-pane of the UI. A user will then have the option of

selecting a block from the side-bar, dragging and dropping

it onto the central canvas panel. A number of ports will

be shown along the boundaries of each block; the ports

have a type attributed to them and ports of compatible

types can be connected together by selecting one port and

dragging a connector “wire” to another port. When this is

completed, the same connection information is transmitted to

the device, where physical connections aremade. Thismight,

for example, be the “out” port of a Look Up Table(LUT),

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA184

User Interfaces and User eXperience (UX)
THPHA184

1869

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



connected to the “enable” port of an Output Encoder

(OUTENC).

Usage needs to be intuitive and thus the user interface

design must follow a standard approach, giving a familiar

user experience (UX).

DESIGN DECISIONS
Target Platform
The user constructs the configuration in the central main

instrument configuration area (main-pane) by placing blocks

using drag-and-drop. The connections between the blocks

are then made by selecting a defined port on one block and

dragging a “wire” to a port on another block. After checks

for port type compatibility, the new association will be sent

to the instrument, where the connection is made in internal

logic. With the demand of a high level of user interactivity,

it became apparent that the user interface should be reactive

and intuitive. Targeting standard HTML5 capable browsers

was considered to be the most expedient route to being

operating system agnostic and with this in mind, it was

decided to create a prototype application, using a popular,

off-the-shelf, open source framework.

React
React [3] was developed by Facebook and open sourced

in 2013. It has been adopted as the Javascript framework of

choice for MalcolmJS for the following reasons:

• Rendering in a virtual DOM (Document Object Model)

– the react framework takes care of rendering only those

items which have changed, so making the application

very responsive.

• Clean Abstraction – UI components and information

stores have clean, well defined interfaces, which

reduces coupling and improves testability.

• Flux design pattern – Information flow is strictly in

one direction only, with components being notified

when data have changed, allowing them to update visual

representation when required.

• Development tools – an impressive selection of open

source tools.

• Long Term Support – React has already become a

leading industry standard, having been adopted by large

organisations such as Netflix, Facebook, Atlassian and

many others. It has significant development momentum

and a very large developer community.

Websockets
Historically, posting data from a browser application

has been a straightforward; however receiving data asyn-

chronously from an external source was problematic and

always a compromise, utilising long-polling or AJAX

techniques. Recently, Websockets [4] have become a

mature and reliable method of delivering a persistent and bi-

directional interface, facilitating an external entity to actively

push information to a browser-based application at any time.

Also the application can push information to an external

entity, without the need to establish a full HTTP request.

Javascript Object Notation(JSON) Based Protocol
As JSON [5] is widely supported in most programming

languages and a number of open source libraries are also

available, the communications protocol between the browser

application and external systems has been developed with

JSON as the information exchange language. JSON is

easily human readable, which brings an advantage to the

development process.

Node Package Manager(NPM)
NPM [6] is the package manager for Javascript and the

world‘s largest software registry. It was chosen for the wealth

of tools and libraries it provides. The NPM repository

offers approximately 475,000 open source tools and code

modules. A sample of some of the NPM packages used

within MalcolmJS is:

• interact.js – to manage user dragging of components

on screen

• react-toolbox – a set of React components that imple-

ment Google‘s Material Design specification

• karma – a Javascript tool to facilitate Test Driven

Development (TDD)

These are shown in Fig. 3.

Figure 3: Component Context Model.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA184

THPHA184
1870

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)



Webpack
Webpack is a module bundler for modern Javascript

applications, facilitating code to be designed, written and

tested in a structured fashion, using the latest ECMAScript

(ES) language edition, such as ES6. Most modern browsers

fully support ES5, but not the full set of features of ES6

(and above) Javascript editions. To realise the benefits of

developing with ES6, it has been necessary to transpile the

ES6 code down to ES5 (or lower), as a bundled monolithic

Javascript file. This is readily achievable using the Babel

package along with Webpack.

User Interface Style
With the number of ‘apps’ available for mobile and

desktop devices alike, growing at a seemingly exponential

rate, users have come to expect an intuitive and responsive

user interface and experience. This is typically achieved by

adopting a standard, well documented design pattern, such

as Google’s Material-UI, Polymer and Semantic-UI. The UI

pattern that was adopted for MalcolmJS is Material-UI [7],

which has been achieved using the NPM packge: react-
toolbox, which provides numerous components to facilitate
a versatile user interface to be constructed quickly and built-

in conformance with the Material-UI standard. Regardless

of the platform used (mobile or desktop devices of various

screen sizes), the user interface will automatically adapt

appropriately for the device’s format.

DEVELOPMENT PROCESS
Simulator
MalcolmJS is principally driven by the changes in

external instrumentation. To facilitate efficient development

and testing, a device simulator, communicating using

Websockets and the Malcolm Protocol [8], was developed.

This can provide further diagnostic information within the

simulator in conjunction with a Javascript debugger on

the client browser. As Websockets are the communication

interface of choice, which operates seamlessly over a local

connection within the client’s host machine, or remotely

over a network interface, the simulator provides an analogue

which is close to the real thing.

Project Structure
The structure of the MalcolmJS development configu-

ration has been given careful consideration. Javascript

modules for views and stores are located in separate

directories from the main project directory. Webpack is used

as the central builder agent, whose project configuration is

stated fully in webpack.config.js. The configuration file

is itself, a Javascript module, which exports a Javascript

object; it sets out rules as to what helper tools should be run

to process the source code, how to handle style sheets and

how to transpile the source into the bundled Javascript file,

ready to send to the browser.

Debugging
Debugging the Javascript code is facilitated on the

browser, using tools such as Web Developer Tools under

Chrome or Firefox. Although the code which is running on

the browser is a transpiled bundle from the original code, it

is straightforward to perform a comprehensive debug, as the

debugger can be pointed at souce code map file, generated by

Webpack; so making available much needed functionality,

such as single stepping and exception stack traces.

EXPERIENCES AND LESSONS LEARNED
Selecting Third Party Tools and Packages
The NPM packages can be readilly incorporated into

the application under development, simply by ‘npm install

<package>’. However it is important to consider the

following options and questions before employing a package:

• When was the package last updated and are there likely

to be future releases to maintain compatibility with the

ever evolving React platform, which has short release

intervals?

• How popular is the package and how well is it rated

among peer developers?

• On how many other packages is a particular package

dependent? As this can lead to the bloating of the final

application.

It is vital that libraries keep pace with developments in the

React framework, or risk deprecation. This was the case with

‘react-panels’, which after a year of no maintenance by its

author, became impossible to include in the local MalcolmJS

project build. After some evaluation, react-toolbox was

adopted, which is a very popular and well maintained UI

library.

ECMAScript
Javascript is now a mature, highly versatile and efficient

language, with an impressive code base of open source

libraries. ES6 is now a well adopted standard and ES7 is

also being deployed with many rich features fulfilling the

expectation of a modern language. It is a robust tool for

developing not just browser applications, but also stand-

alone applications, running on various platforms.

Discard the Prototype
The prototype is invaluable as a vehicle for evaluating

concepts and refining specifications, but be prepared to

discard it. Putting effort into preserving code which has

mostly evolved, is false economy; as it has been bolted

together, new bits roughly glued in place, with less than

optimal design coherence, maintenance of the code would be

difficult and risky. This was the case with MalcolmJS, when

it became apparent, especially as specifications evolved,

that a re-write needed to be undertaken, whilst exploiting

architecture and techniques from elements of the prototype.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA184

User Interfaces and User eXperience (UX)
THPHA184

1871

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



In hindsight, by undergoing a fundamental redesign for

the production code base of MalcolmJS, it’s likely that

significant time and effort could have been avoided.

SUMMARY OF PROGRESS TO DATE
The Diamond Control Systems has now implemented

a number of Malcolm compatible instruments across

beamlines. Whilst these devices can be configured through

other means, there is an increasing need to roll out an

operational web interface - MalcolmJS. An alpha test

release has been made internally and the feedback has been

highly productive, with constructive changes to the original

specification. It is likely that MalcolmJS will evolve with

increasing versatility as user and instrument requirements

change over time. Not only has the development of this

application been beneficial to data acquisition and control of

PandABox, but it potentially paves the way for adoption with

accelerator control systems generally, due to the responsive

nature of Websockets communication.

REFERENCES
[1] Zhang et al., “PandABoxBox: A Multipurpose Platform

For Multi-technique Scanning and Feedback Applications”,

TUAPL05, presented at ICALEPCS 2017, Barcelona, Spain,

this conference.

[2] T. Cobb, et al., “Malcolm: A Middlelayer Framework for

Generic Continuous Scanning”, TUPHA159, presented at

ICALEPCS 2017, Barcelona, Spain, this conference.

[3] React: A Javascript library for building user interfaces,

https://reactjs.org
[4] The WebSocket Protocol, https://www.websocket.org
[5] Introducing JSON, http://www.json.org
[6] npm: https://www.npmjs.com
[7] Material-UI: Google Inc., https://material.io
[8] Pymalcolm message documentation, http://pymalcolm.

readthedocs.io/en/latest/reference/messages.
html

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-THPHA184

THPHA184
1872

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)


