
PANIC AND THE EVOLUTION OF TANGO ALARM HANDLERS

S.Rubio-Manrique, G.Cuní, D.Fernández-Carreiras, ALBA-CELLS Synchrotron, Barcelona, Spain
G.Scalamera, Elettra-Sincrotrone Trieste, Trieste, Italy

Abstract
The PANIC Alarm System is a python based suite to

manage the configuration, triggering and acknowledge of
alarms and automated actions in a Tango control system.
The suite was developed at ALBA in 2007 and since then
it has been adopted by several other facilities and installa-
tions such as Synchrotron light sources and large tele-
scopes, integrating in the process a large set of com-
munity-requested features.

Its scalability is based on the stand-alone PyAlarm en-
gines, that operate distributed across the control system;
and the PANIC python API and user interfaces, that cent-
ralize the operation and configuration of the system. Each
PyAlarm engine performs polled or event-triggered evalu-
ation of alarm rules, complex logical operations and regu-
lar expression searches. The activation, recovery or reset
of any alarm in the system can trigger actions like email,
SMS, audible messages, local/remote logging, database
insertion or execution of tango commands.

This paper describes the evolution of the suite, its com-
patibility with other alarm handlers in Tango, the current
state-of-the-art features, the compliance with Alarm Man-
agement standards and the future needs.

INTRODUCTION
According to IEC 62682:2014 [1], the primary function

of an Alarm System will be to notify abnormal process
conditions or equipment malfunctions and support the op-
erator response. The alarm system shall include mechan-
isms for communicating the alarm to operators via HMI
or annunciators, as well as additional functions like event
logs, alarm historian, automated actions and performance
metrics.

Alarm Systems in Tango
The Tango Control System framework [2] is the result

of a growing international collaboration to develop a
modern open-source object-oriented control system that
empower sharing control software development between
institutions.

Three alarm systems are currently available in Tango:

• Tango Alarm Handler, by Elettra[3]: a centralized,
event-based system evaluating syntax-rich formulas
with high performance (C++), uses external devices
as annunciators.

• Alarm Archiving Database, by Soleil Synchrotron: a
centralized alarm logging database (Java), uses exist-
ing alarm configurations in Tango DB instead of for-
mulas, records quality changes using polling.

• PANIC, by ALBA Synchrotron[4]: a distributed sys-
tem that evaluates Python formulas, focused on flex-

ibility has limited support for events, provides mul-
tiple annunciator types and automated actions.

Having several options is at the same time an advantage
and an impediment if they are not complementary or able
to interact. Thus, an effort to standardize the tools have
been started based on the recommendations of the IEC
62682 standard.

The IEC 62682:2014 Standard
The “Management of alarms sytems for the process in-

dustries” standard (IEC 62682:2014) addresses the devel-
opment, design, installation and management of alarm
systems in the process industries. It defines the termino-
logy and models to develop an alarm system and the work
processes to effectively maintain the alarm system
throughout the life cycle. It is based on ISA-18.2-2009 as
well as previous documents reported by EEMUA [5] as-
sociation.

As an standard, IEC 62682 provides a minimum set of
rules and a guide for unifying criteria amongst
countries/institutions. It provides recommendations on
alarm systems design, implementation, and prevention of
alarm floods (guarantee 12 < alarms/operator/hour). It
also establishes that it is the responsibility of the opera-
tion group and the whole institution to ensure that all the
procedures and stages of the standard are enforced, not re-
lying only in the tools to do so.

THE PANIC ALARM SYSTEM
PANIC project was initiated during the construction

phase (2007-2010) of the ALBA Synchrotron [6] to
provide remote control of the several installed equipments
on site (vacuum, Linac) while no operators were perman-
ent on-site. In comparison with already existing alarm
systems, PANIC is an scalable decentralized system that
can aggregate hundreds of alarms from multiple Tango
control systems or just run as a single process in an isol-
ated IOC. Since 2013, PANIC has been adopted by sev-
eral members of the Tango collaboration (Maxlab,
Solaris, SKA).

PANIC Architecture
The PANIC Alarm System is based on two main entit-

ies: the Alarm object, keeping settings and state of each
single alarm, and the PyAlarm device, a Tango device
server on charge of evaluating a sub-set of alarms with a
common configuration (on/off times, event count, annun-
ciators setup, error management, ...).

PyAlarm device servers are deployed on the server
side, loading each of them a list of alarms from an
AlarmAPI collection (Fig. 1). Each PyAlarm device is an

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL03

TUBPL03
170

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

independent process applying an specific setup to evalu-
ate its formulas, export the results via dynamic attributes
and summary arrays and perform logging and notifica-
tions via email, SMS or Tango commands.

Figure 1: Panic Architecture.

The alarm system is entirely deployed by the panic Py-
thon module [7]. This library contains the classes for both
the server and the client side, using the same API objects
on both sides:

• panic.Alarm: Object that will keep both alarm con-
figuration and state in servers and clients.

• panic.AlarmDS: Object that contains the configura-
tion of an alarm evaluation engine and the methods
to modify or manage it.

• panic.AlarmAPI: API object that allows to store/re-
trieve/manage alarm collections from a same Tango
database origin.

• panic.AlarmView: API super-set that allows to sort
and filter alarms from the same or different alarm
systems, it can be used from both devices and clients.

The dynamic creation of a Tango attribute for each de-
clared alarm allow any graphical user interface to display
the alarm current value. This feature enables a single Py-
Alarm device server to be fully-featured as an Alarm Sys-
tem on its own.

In addition, the usage of unique tags for alarms allow to
freely move alarms between PyAlarm servers that are
managed by the same AlarmAPI. A feature that allows the
operator to easily modify the timing of an alarm or the
control engineer to manage the work balance between
servers.

PyAlarm Tango Device Server
The PyAlarm device server performs polled evaluation

of alarm formulas stored in the Tango Database, export-
ing its actual result, the attribute values used for the eval-
uation, and several methods for data inspection and alarm
Reset/Acknowledge/Disable.

The key features that define the PyAlarm device are:

• single process capable to evaluate tango attributes
• notification (email/commands) included in the device
• minimum dependencies, just Tango and Python
• alarm state kept locally, logging local or remote

Each PyAlarm device is an evaluation engine with in-
dependent configurations regarding manage, events, log-
ging, exception management, etc. Amongst others, these
properties will be used to control the evaluation:

• PollingPeriod: period in seconds at which alarm for-
mulas are evaluated.

• AlarmThreshold: number of successive positive res-
ults that will activate an alarm (multiplied by
PollingPeriod provides the activation time).

• AutoReset: time period that controls the deactivation
of an alarm once its condition is no longer active.

• Enabled: formula that will control the enable/disable
for the whole device, it can be used for transitioning
from maintenance to operation mode.

Many other properties are used to tune specific beha-
viours of the evaluation engine (events vs polling, cache
depth, exception management). See the PyAlarm User
Guide [8] for further reference. The HMI provides user
validation to restrict the access to these properties.

Any Tango Device Server can interact with PANIC
alarms using the PyAlarm device attributes and states as
alarm triggers, or using their commands or attributes as
annunciator actions. This same feature can be used to
group alarms hierarchically as any alarm attribute can be
reused in a higher level alarm formula.

While PyAlarm is the minimal an essential unit of the
Alarm System, the PANIC project combines an ecosys-
tem of tools [9] that can be used for IOC monitoring, log-
ging, speech synthesizing and other types of annunciation
including recovery actions over the control system (e.g.
retire mirror in case of overheating).

Alarms Specification
Definition of Alarm objects in PANIC has been adapted

to the terminology used in the IEC 62682 norm. Each
alarm is defined by the following fields:

• tag: a unique identifier for this alarm within the cur-
rent Tango Database, the API enforces that no other
alarm could repeat an already used tag.

• formula: single-line code to evaluate, it allows to use
any Tango attribute name as a variable to operate
with, as well as regular expressions to operate on
lists of values.

• device: the PyAlarm device on charge of evaluating
the alarm formula and trigger its notifications.

• priority: unique set of categories for prioritization of
alarms: ERROR, ALARM, WARNING, INFO, DE-
BUG, CONTROL

• message: a description of the alarm to be sent to the
annunciators of the alarm, as well as links to the op-
erators knowledge base and the procedures to follow.

• annunciators: list of email receivers, phone numbers
or Tango commands or attributes with its arguments.

In addition to its defining properties, alarm current state
is kept using different flags within the API object:

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL03

User Interfaces and User eXperience (UX)
TUBPL03

171

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

• state (enumeration)
• error (None or Exception message)
• disabled (timestamp)
• active (timestamp)
• acknowledged (timestamp)

In its initial releases Alarm states where just a combina-
tion of the boolean result of the formula and the quality
(Alarm/Warning/Valid/Invalid) of the external attribute
together with the values of its flags.

Although flexible, this approach required additional
communication of values between clients and device serv-
ers. This has been improved increasing the number of
alarm states (Fig. 2) and exporting a new json-like Alarm-
Summary attribute with the whole device status.

Figure 2: Alarm State Transitions.

The Alarm States has been redefined according to the
IEC 62682 Standard. This conversion has been coordin-
ated with Elettra’s Tango Alarm System to unify the
meaning of each alarm state within Tango. Alarms states
and transitions can be seen in Fig. 2 and are governed by
PyAlarm device properties and commands:

• NORM or Normal: Alarm evaluates to False.
• UNACK or Not Acknowledged: Alarm formula

evaluated as True for a number of cycles above
AlarmThreshold property, not yet acknowledged by
operator.

• ACKED: Alarm is active but acknowledged by oper-
ator. Acknowledge/Renounce commands will man-
age the transition for UNACK and ACKED.

• RTNUN or Return To Normal Unacknowledged:
Alarm condition is no longer True, but the alarm is
still temporarily latched by its boolean attribute until
a Reset() command is executed. This period is man-
aged by the AutoReset device property.

• SHLVD or Shelved: Alarm evaluation has been tem-
porarily disabled by operator using the
Disable(timeout) command. Shelving will finish after
timeout or PyAlarm restart.

• DSUPR or Design Suppressed: Alarm evaluation has
been disabled by an evaluable condition, using the
Enabled property. This condition affect to all alarms
managed by the same device.

• OOSRV or Out Of Service: The PyAlarm device on
charge of evaluating the alarm has been stop (inten-
tionally).

• ERROR: The alarm formula cannot be evaluated,
either by formula or attribute exception, timeouts or
because of PyAlarm malfunctioning. This state is not
included in the norm but useful to differentiate failed
alarms.

Alarm Formulas Evaluation
Each PyAlarm device will evaluate the formulas of its

assigned alarms at a fixed rate. The evaluation can be ex-
ecuted at a rate up to 10Hz, depending on the number of
attributes and alarms to be evaluated. Attribute values are
acquired by polling or events and cached to be reused in
several formulas if necessary. The cache has a depth equal
to the AlarmThreshold property, allowing to calculate
alarms on deltas or averages of the last values.

Formulas, as shown in Table 1, are evaluated using the
TangoEval object from fandango library[10], that
provides pythonic[11] syntax and regexp searching for
easily accessing Tango attribute values, qualities,
timestamps, delta increments and received exceptions.

 Attribute qualities can be used in PANIC to delegate
the alarm condition evaluation to the hardware device,
using internal set-points of the hardware instead or set-
tings fixed by operators in the Tango database.

Table 1: Examples of Formulas Format (including regular
expressions and wildcards, as seen in the docs[12])

T01_AL = bl01/plc/01/T01 > 30 or bl01/plc/01/T01.exception

T02_AL = bl01/plc/01/T02.quality in
(ATTR_ALARM,ATTR_WARNING)

T03_AL = bl01/plc/T3.delta > 3

TEMPS_ALARM = T01_AL or T02_AL or T03_AL

TEMPS_ALARM = GROUP(T*_ALARM)

TEMPS_ALARM = any(t>30 for t in FIND(bl01/plc/T*))

PANIC extends TangoEval functionality with new
methods like GROUP, to manage multiple alarms as one.

Alarm Annunciators and Logging
The primary function within the alarm system is to no-

tify operators of abnormal process conditions or equip-
ment malfunctions and support the response.

Each PyAlarm device is already capable to trigger mul-
tiple annunciator types for each alarm state transition:
visual, SMS, email, Telegram and external commands.
Each of these methods can be called generically just
passing the email or phone number to the annunciators list
or calling the PyAlarm commands (SendMail, SendSMS,
SendTelegram) to generate customized messages.

This list can be extended using commands from other
Tango devices, like FestivalDS that allows to trigger
speech-synthesizing through control room speakers. Other
Tango devices like SnapArchiving or FolderDS are cur-
rently used to enable remote logging either in database or
JSON files. These external devices complement the log-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL03

TUBPL03
172

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

ging of alarms via local files for each PyAlarm or Tango
Archiving [13] of alarm attributes.

Initially, annunciators others than email were only used
whenever the alarm was transitioning from NORM to
UNACK, but the ACTION keyword has been added to
execute commands or attribute writing on Alarm, Ac-
knowledge or Reset transitions.

As example of this behaviour, automatic aperture of
ALBA front-ends has been configured using PANIC, to
trigger the valves Open() command once all protection
systems interlocks have been cleared.

HUMAN MACHINE INTERFACES
To help the operation and maintenance of any installa-

tion, the operators require alarm summary windows [14]
to clearly identify any abnormal situation in the control
system. The user interfaces must help the operators
providing sorting, filtering and shelving functions as well
as some guidance to the sequence of actions to be done by
the operator (e.g. flowcharts).

Figure 3: AlarmGUI widget, filtering options.

The PANIC AlarmGUI list widget (Figure 3) provides
alarms ordered by state and the time of the first event that
triggered the condition. Thus, first-to-come unacknow-
ledged alarms will appear always at the top of the alarm
list grouped by its state and priority. Once alarms are ac-
knowledged the list will be reorganized to provide the
most meaningful information in any case.

The AlarmGUI widget can be used either as an stand-
alone application or embedded in other taurus-based ap-
plications like Vacca [15, 16].

Three applications have been developed separately for
viewing alarm logs, either in files (FolderDS), Snap data-
base or Elastic Search (Kibana); but each institute is cur-
rently using its own.

Rationalization, Classification and User Filters
One of the main objectives to achieve when designing

an alarm system should be to prevent Alarm flooding [1,
14]. Any condition in which the number of alarms requir-
ing operator action exceeds a frequency above 2 in a
10 minutes period will be considered hardly to manage,
while any amount above 10 alarms in 10 minutes will be
considered as an unacceptable alarm flooding. Classifica-

tion and filtering of alarms must ensure that each operator
only has to attend to alarms regarding its area, and priorit-
ization will be used to avoid low-priority and non-urgent
alarms to create unwanted noise.

In PANIC, Alarms can be classified using different cri-
teria: state, priority, DSUPR condition, device name,
device domain and family, annunciators and receivers.
Once classified, the list can be filtered using extended
regular expressions and saved as a UserFilter in the
Tango Database. It enables each operation group (Va-
cuum, Diagnostics, Cooling, Radiofrequency) to custom-
ize its view of the application and hide those alarms that
are not part of their interest.

Figure 4: A UserFilter panel, allows pattern recognition
to the operator and user-validated access to configuration.

Once Alarms are classified and filtered, a dedicated
panel can be launched to display the alarms in which an
specific operator is interested in (Fig. 4). This and other
customized panels are built on top of the AlarmView API,
that can aggregate data from multiple control systems and
at the same time apply an stored UserFilter setup.

An example of a multi-host AlarmView is shown in
Figure 5, where alarms from different beamlines are sum-
marized in a single html table view.

Figure 5: Web report [17] summarizing alarms from dif-
ferent beamlines.

User Validation and Action Logging
Permissions to modify Panic alarms are restricted for

each user using the TangoUserLogin (included in PANIC)
and LdapUserLogin (external) classes; that implement
user identification using either encrypted hashes or LDAP
credentials.

Users belonging to the list of AdminUsers will be al-
lowed to modify any alarm in the system, while at the
same time any user which email is receiving an alarm is

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL03

User Interfaces and User eXperience (UX)
TUBPL03

173

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

also capable to modify it. This gives flexibility to operat-
ors and technicians in shifts.

As required by the IEC 62682 standard, once User val-
idation is enabled a local registry for all alarm changes is
generated to keep track of any modification in the system
configuration.

As permissions are stored in the Tango Database, they
should be combined with the setup of the TangoAc-
cessControl system to fully restrict unwanted access.

PANIC TESTING
A testing suite has been developed for PANIC in order

to validate each PANIC release in continuous integration.
The testing suite launches a SimulatorDS[18] device and
10 PyAlarm instances with different configuration setups.
Each different setup can be easily configured using a csv
file as seen in Table 2.

Table 2: Test Case Specification in csv Files

Device Property Value

test/panic/
values

AlarmList
A_VALUE

A_QUALITY
A_VALUE

.formula
test/panic/sim-01/T30>15

A_QUALITY
.formula

test/panic/sim-01/T30.quality
== ATTR_ALARM

AutoReset 0.0001

PollingPeriod 0.5

Alarm-
Threshold

1

The obtained alarm values and its timing are compared
against expected results via an additional PyAlarm device
and the panic.ds.kpi library module, that extract metrics
from the current Alarm system performance.

Key Process Indicators (like alarms/operator/10min
and frequency log), will be added to the AlarmGUI wid-
get in next releases, as required by the IEC 62682 stand-
ard for an alarm system in production.

CONCLUSIONS
The PANIC Alarm System has been already in produc-

tion at ALBA Synchrotron for 10 years, a period in which
it has grown and developed a large set of features. ALBA
Accelerators and Beamlines are actually monitored by
123 PyAlarm devices, managing 657 formulas evaluating
values from 2506 distinct attributes.

The convergence with Tango Alarm Handler and the
adoption of the IEC 62682 have been the two final steps
to convert it into one of the most complete open source
solutions to implement alarm systems.

It is necessary to remark that software Alarm Systems
are not yet an equivalent to plc-based protection systems.
They fill a different gap in the control needs of a large fa-
cility as they are not part of the protection but of the re-
sponse via human machine interfaces.

But, unlike other parts of the HMI that just translates
the hardware into a console, the Alarm Strategy adopted
by the operation group may change completely the final

result and usability of the system. Despite of the tools
used, the ultimate conformance with the standard is re-
sponsibility of the operation group, and they must ensure
that a proper alarm philosophy and strategy is designed
and applied.

Convergence of Tango Alarm Systems
Although PANIC supports Tango Events, the formula

evaluation is not event-triggered as it is in the case of the
Tango Alarm Handler device. This is a feature that has
been requested several times and the current approach is
to, instead of doing a complete redesign of PyAlarm, con-
verge with the fully event-based Tango Alarm System and
allow both systems to coexist and use the same applica-
tions and database schema.

This convergence required modifications in both sys-
tems that have been coordinated to achieve compatibility
between both. These changes are summarized in [19].
Latest releases of both systems (September 2017) already
apply these changes, making already possible to deploy
hybrid C++/Python solutions that take maximum profit of
its complementary features.

ACKNOWLEDGEMENT
We want to acknowledge the MaxIV development team

and G.Jover from ALBA for its contributions to the Py-
Alarm Kibana and Telegram annunciators respectively.

Also the development teams at Solaris Synchrotron and
SKA/TCS for its detailed debugging of PANIC against
the latests releases of Tango and Taurus.

We also want to mention the work of the members of
the ALBA operators group on refining the PANIC alarm
system with its valuable experience.

REFERENCES
[1] “Management of alarms systems for the process industries”,

IEC62682, 2014

[2] TANGO website, http://www.tango-controls.org

[3] L. Pivetta, “Development of the Tango Alarm System”, in
Proc. ICALEPCS’05, Geneva, Switzerland, Oct. 2005, paper
WE3B.1-70

[4] S. Rubio-Manrique et al., “Extending Alarm Handling in
Tango”, in Proc. ICALEPCS’11, Grenoble, France, Oct.
2011, paper MOMMU001.

[5] Engineering Equipment and Materials Users’Association
(EEMUA) issued publication, 191. University of Man-
chester

[6] D. Fernández et al., “Alba, A Tango Based Control System
in Python”, in Proc. ICALEPCS'09, Kobe, Japan, Oct. 2009,
paper THP016.

[7] The panic python module, https://github.com/tango-
controls/panic

[8] PyAlarm User Guide, http://pythonhosted.org/panic

 /PyAlarmUserGuide.html

[9] S. Rubio-Manrique et al., “PANIC, a Suite for Visualization,
Logging and Notification of Incidents”, in Proc.
PcaPAC’14, Karlsruhe, Germany, Oct. 2014, paper FPO011.

[11] The fandango python module, https://github.com

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL03

TUBPL03
174

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

 /tango-controls/fandango

[10] S. Rubio et al., “Dynamic Attributes and Other Functional
Flexibilities of PyTango”, in Proc. ICALEPCS'09, Kobe,
Japan, Oct. 2009, paper THP079.

[12] Fandango recipes, http://www.pythonhosted.org/panic

 /recipes.html

[13] L. Pivetta et al., “New Developments for HDB++ TANGO
Archiving System”, presented at ICALEPCS’17, Barcelona,
Spain, Oct. 2017, paper TUPHA166.

[14] Marcus Tennant, “Implementing Alarm Mangement Per the
ANSI/ISA-18.2 Standard”, Control Engineering, September
2013.

[15] S. Rubio et al., “Unifying all Tango Services in a Custom-
izable Graphical User Interface”, in Proc. ICALEPCS’15,
Melbourne, Australia, Oct. 2015, paper WEPGF148.

[16] The Taurus Framework, http://www.taurus-scada.org

[17] M. Broseta, D. Roldan, S. Rubio, A. Burgos, and G. Cuni,
“A Web-Based Report Tool for Tango Control Systems via
Websockets”, presented at ICALEPCS’17, Barcelona,
Spain, Oct. 2017, paper TUPHA173.

[18] S.Rubio-Manrique et al., “Reproduce Anything, Anywhere:
A Generic Simulation Suite for Tango Control Systems”,
presented at ICALEPCS’17, Barcelona, Spain, Oct. 2017,
paper TUDPL01.

[19] G. Scalamera, L.Pivetta, and S.Rubio-Manrique, “New de-
velopments for the Tango Alarm System”, presented at
ICALEPCS’17, Barcelona, Spain, Oct.2017, paper TU-
PHA165.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL03

User Interfaces and User eXperience (UX)
TUBPL03

175

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

