
MXCuBE3 - BRINGING MX EXPERIMENTS TO THE WEB

M. Oskarsson, M. Guijarro, D. de Sanctis, A. Beteva, G. Leonard, ESRF The European
Synchrotron, Grenoble, France

M. Eguiraun, J. Nan, F. Bolmsten, A. Milan-Otero, M.Thunnissen, MAX IV Laboratory, Lund,
Sweden

Abstract
Originally conceived at ESRF and first deployed in

2005 MXCuBE, Macromolecular Xtallography
Customized Beamline Environment, has with its
successor MXCuBE2, become a successful international
collaboration. The aim of the collaboration is to develop a
beamline control application for macromolecular
crystallography (MX) that are independent of underlying
instrument control software and thus deployable at the
MX beamlines of any synchrotron source. The continued
evolution of the functionality offered at MX beamlines is
to a large extent facilitated by active software
development. New demands and advances in technology
have led to the development of a new version of
MXCuBE, MXCuBE3, The design of which was inspired
by the results of a technical pre-study and user survey.
MXCuBE3 takes advantage of the recent development in
web technologies such as React and Redux to create an
intuitive and user friendly application. The access to the
application from any web browser further simplifies the
operation and natively facilitates the execution of remote
experiments.

INTRODUCTION
MXCuBE is a control software developed for

Macromolecular Crystallography beamlines. Since its
first version, deployed in 2005 at The European
Synchrotron (ESRF), MXCuBE has continuously evolved
to facilitate user experiments by hiding the complexity of
the beamline hardware and low-level control
environment. In 2013 MXCuBE2 succeeded the original
version and became the core of an international
collaboration. MXCuBE2 was completely redesigned to
permit the operation of new hardware, with particular
relevance given to sample changer robots and new
generation X-ray detectors. The development further
enabled the automation of MX beamlines and maximised
sample throughput [1]. Since then, the constant evolution
of MX data collection methods and the increasing
popularity of remote data collection, created new
demands on the control and acquisition software, that
converged into a new graphical user interface. This paper
presents the architecture, preliminary usage feedback, and
experiences learned from the development of the next
version of MXCuBE, version 3. MXCuBE3 takes
advantage of the recent development in web technologies
such as ECMAScript 6 (ES6), React and Redux which the
authors believe provides an environment suitable for
implementing a complex web application such as
MXCuBE3.

ORGANIZATION
The MXCuBE collaboration currently consist of eight

institutes (ESRF, Soleil, MAX IV, HZB, EMBL, Global
Phasing Ltd., DESY and ALBA) actively developing the
software. A few further institutes are currently
considering becoming full members of the collaboration.
Developers and scientists meet in joint scientific and
development workshops twice every year to share their
respective progress and agree on the future goals of the
collaboration. The collaboration enhances and speeds up
the development of MXCuBE, many sites share similar
needs and instruments and can thus quickly adapt to
already existing solutions. Users of all MXCuBE sites are
further presented with a familiar user interface, which
decreases the learning curve and increases the portability
of experiments across the different facilities.

A Memorandum of Understanding (MoU) has been

signed by the partners in the collaboration. The
collaboration comprises steering-, scientific- and a
developer's committees. The development of MXCuBE3
was promoted and supported by the collaboration,
however the development and deployment effort for
MXCuBE3 is being jointly made by ESRF and MAX IV.
Development started in September 2015 with a
comprehensive roadmap and specific goals established
during an initial meeting. The project uses an agile, scrum
like, process. Planning meetings are held every two weeks
and development workshops every three months. The
project is available on GitHub [2].

BACKGROUND
MXCuBE 2 has become the leading software used to

collect data for MX-experiments at European
synchrotrons [3]. As the MXCuBE project is an
international collaboration and the software is used on
different sites across the world, the aim of the project is to
provide user friendly software which is easy to adapt to
various control systems and hardware environments.

The evolution of MX beamlines, the increase in sample
throughput and the introduction of new collection
procedures, have introduced new demands on the
software [4-7]. The application and its interface have
grown increasingly more complex to be able to handle the
new requirements, as a side effect decreasing usability of
the application [8]. At the same time key software
libraries used in the User Interface (UI) are getting
outdated and difficult to maintain. Efforts to update these

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL05

TUBPL05
180

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

key libraries have been made and a version of MXCuBE
with more recent UI libraries is available [9]. However
the main issue of keeping pace with these software
libraries and maintaining the environment on which they
run remain. As software technology evolve new libraries
and methods for developing UIs have emerged that the
authors believe could alleviate some of these issues.

The MXCuBE community have during this time

therefore been discussing the requirements of, version 3
of MXCuBE. The ESRF Structural Biology group
surveyed the user community to get their opinion on
features they would like to improve or add. This was used
to define the key features of MXCuBE3:

● Facilitating maintenance and installation of both
client and server

● Support for new sample changers and larger sample
quantities

● Improve the integration with LIMS database like
ISPyB

● Enhancing the possibility of integration with third
party data collection strategy calculation software

● Improve overall user experience, using a more recent
user interface design

● A scalable interface that adapts better to available
screen sizes

● Improve remote access performance

MXCuBE3 as a Web Application
Web application technologies have matured as

streaming services for video and audio such as, Netflix,
Spotify and Deezer have become increasingly popular.
Companies like Facebook and Google have introduced
libraries for frontend development like React and
AngluarJS that further facilitate the transition to a web
based environment.

One of the major advantages with web applications and
perhaps the reason for the popularity of the services
mentioned above is the ease of access. A web application
can easily be accessed from almost any computer or
mobile device without any additional software installation
required. Bringing MXCuBE to the web facilitates
seamless integration with already existing web based
services like the LIMS system ISPyB. A key feature of
MXCuBE is the feature, where a user logs in and
performs an experiment remotely. Staff or other users can,
depending on their access rights, login to the beamline but
only to observe what is being done or communicate, via a
chat mechanism, with the user in control. Implementing
MXCuBE as a web application enables the remote access
feature of MXCuBE almost by design. MXCuBE3 can
simply be rendered in a browser with native elements
directly on the client, whereas other means of remote
access have to rely on specific remote access applications
and compression schemas (i.e. NX-Client) [10]. The

authors believe that this will greatly improve performance
and ease of access to the application.

BACKEND
The backend of MXCuBE has been divided into two

layers, beamline control and web service. The beamline
control layer provides access to beamline instrumentation
and procedures via HardwareObjects (HO) [11-12].
MXCuBE2 already introduced a clear separation between
user interface and beamline control, following MVC
design pattern principles. As for MXCuBE2, in
MXCuBE3 the beamline control layer is implemented by
Hardware Objects. In order to speed up development by
reducing regression and facilitate testing, the same
version of HO is used as in MXCuBE2. The Web service
layer implements a REST API to the beamline control
layer that is used by the client to perform the various
operations requested by the user.

Beamline Control Layer
The beamline control layer consists of a set of

Hardware Objects which implement a device or
procedure. Hardware Objects are Python classes
configured by an eXtensible Markup Language (XML)
configuration file. Each configuration file contains the
information necessary to initialize the corresponding
Hardware Object. The Hardware Objects provide access
to beamline instrumentation through the beamline control
system and implement the higher-level operations
required by MXCuBE. The beamline control layer
provides an abstraction for control systems such as SPEC,
EPICS, TINE, TANGO and Sardana, Hardware Objects
are in this way control system agnostic.

Hardware Objects support composition, to represent

more complex entities of hardware. In this case, the
configuration XML file defines references between
objects. A referenced Hardware Object is associated with
a “role”, which is used to access the corresponding
instance. Hardware Objects are singleton objects thus
only one instance of each Hardware Object is instantiated
at the time, and this instance is shared across the entire
application.

To create a common instrument and procedure API

which permits cross site adaption, each Hardware Object
inherits an abstract base class that describe the particular
instrument or procedure. The model is flexible enough to
be able to adapt to the hardware and beamline
specificities of different synchrotron sites with little
effort. There are currently over 20 base classes defined in
the beamline control layer.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL05

User Interfaces and User eXperience (UX)
TUBPL05

181

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Web Service Layer
The REST service layer, developed in python, provides

an API for the clients to the underlying beamline control
layer through REST-full web services. These services are
implemented on top of Flask, a Web Server Gateway
Interface (WSGI) compatible micro web framework. The
Flask framework contains the Werkzeug development
web server which is provided as the default server for
MXCuBE3. However, the application can also be
deployed on a WSGI compatible container including
Green Unicorn, uWSGI or Apache mod_wsgi. A thin
utility layer is used to facilitate the access to the beamline
control layer and adds features that are new and
exclusively used in MXCuBE3 (see Figure 1).

The main role of the web service layer is to receive

calls and relay them to either the client or the beamline
control layer it’s thus primarily handling IO operations.
Considering the IO intensive nature of MXCuBE3 and
python's global interpreter lock (GIL), the authors have
chosen to use coroutines, provided by Gevent, instead of
threads to handle concurrency. Gevent is a coroutine-
based networking library that uses greenlet to provide a
high-level API on top of the libev event loop.

In MXCuBE3, a bidirectional event broker based on

SocketIO was implemented to be able to send
asynchronous events from and to the client. SocketIO
provides a bidirectional communications channel capable
of, if needed, degrading to the protocols available on the
connected clients. A special version of Flask, called
Flask-SocketIO is used to enable native support for
SocketIO within the web framework. A session is used to
keep track of information related to a particular user, this
session is kept in a Redis data structure store. The Redis
data structure is written to disk and can be restored in case

of a server fault.

Figure 1: Application architectural overview, with
beamline control layer, web service layer and client.

FRONT END
The user interface is written in Javascript, HTML5 and

CSS. Javascript provides single threaded event driven
programming model which is well suited for UI
development [13]. Javascript is an implementation of the
ECMAscript standard. Recent versions of ECMAScript
have introduced constructs more suitable for writing
complex applications than earlier versions. Most notably

classes and modules was introduced in ES6, released in
2015, the most recent version is ECMAScript 8 (released
in 2017). However the different versions of ECMAscript
are supported to varying degree in each browser, browser
support for ES6 is still incomplete. ES6 code can be
translated, “transpiled”, into ECMAScript 5 code which
has more consistent support across browsers. A software
called Babel is used to perform the translation.

The browser itself does not have a concept of modules

or dependencies, so a build tool called webpack is used to
package, "bundle", the various files into code that the
browser can execute. Webpack handles the various project
assets including Javascript, images, fonts, and CSS via
loader plugins. The code is bundled and further
optimized, “minified” and a set of static files are
produced (see Figure 2). Using Babel (ES6) and Webpack
makes it possible to define and use components and
modules via the export and import statements.

Webpack, Babel and various other third party libraries
used for the build process require a Javascript runtime.
Node.js is used to provide the runtime for build and
development environment. Node.js also provides a
package manager npm (node package manager) with very
large repository of third party libraries.

Figure 2: User interface build steps.

A library for user interface development called React

provides means to create reusable user interface
components. The components enable encapsulation of
interaction logic and display similar to widgets in user
interface frameworks for desktop applications. The user
interface can be expressed in a HTML like syntax called
JSX (JavaScript XML) where react components and
HTML element can be included as tags. React optimises
the rendering of the application and provides component
life cycle for each component via a Virtual-DOM. The
browser events are replaced with synthetic events within
the Virtual DOM which is used to keep track of
components that have changed internal state. Batch
updates of all components are performed and a minimal
set of changes to apply to the original DOM is calculated.
This is done to minimise the number of repaint operations
that are required to update the user interface.

In many user interface frameworks including React the

state of a component is often contained within a data
structure tightly coupled to the component itself. This
means that the state of the application is distributed over
the application and can become difficult to extend and
debug. React can be used together with a state
management library such as Redux to solve this
limitation. Redux makes the state mutations more
predictable by defining an application wide state, referred

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL05

TUBPL05
182

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

to as a store, and imposing certain restrictions on how the
store is updated. The Redux store is an immutable data
structure and can only be updated by dispatching an
action that describes the state transfer. The state
transformation is defined by a pure function called a
reducer that takes the current state and the action as
parameters and returns the new state. The components
listen for changes to the store and are updated
accordingly. The user interface is composed by several of
these reusable React components that reflect the changes
made to the underlying Redux store.

Enabling Remote Access Experiments
In a Remote Access experiment at a synchrotron source

a beamline user carries out an experiment from a different
location i.e from the user’s home laboratory. The samples
are stored in the beamline sample automounter by
synchrotron staff, and the remote users have control of the
endstation once the experiment hutch is interlocked.

Remote Access experiment presents some challenges to
the beamline control software:

● how to manage a remote user’s access control
● how to communicate with the remote user
● how to follow what a remote user is doing
● how to help remote user in case of problems
● how to take back control over remote user in case of

emergency
● how to ensure acceptable real time performance

(latency, real-time video and information messages)

One of the main drivers for MXCuBE3 as a web
application was the need for an improved remote access
functionality. The main points of improvement from
previous versions of MXCuBE are:

● A user is not required to install additional software
(i.e. NoMachine NX client or similar) to connect to
the synchrotron computing system

● Improved real time performance, responsiveness of
the user interface and video streaming frame rate.

● User action monitoring to enable remote assistance

As a web application, MXCuBE3 inherently supports
multiple clients without requiring the installation of any
software apart from a recent web browser on the client
side. The UI elements can be directly rendered in the
browser decreasing the amount of information that needs
to be transferred. Particular effort has been put into the
sample video streaming and MXCuBE3 offers the
possibility to stream the beamline camera video as
MPEG1. Users may need to select different parts of their
samples for data collection, requiring a lot of interaction
with the video stream. Improving the video streaming will
therefore have a big positive impact on remote access
experiment performance.

During remote access to the beamline control system
the first user that logs into the application with a user
account that currently has the right to the beamline
becomes what is referred to as a Master. The Master user
is the only user that can work on the beamline. Master
users have the possibility to grant subsequent logins from
the same account to observe what is currently being done
on the beamline. Such users become Observers, the
Observer users can ask to become Master, if accepted by
the current Master the roles switch and the current Master
becomes an Observer. This system guarantees that only
one user at a time can use the beamline. It also ensures
data confidentiality since the Master user has to grant the
access for a user to become Observer. The current
ongoing procedure is paused if the current Master client
loses connection to the system.

MXCuBE3 takes advantages of the application wide
state stored in the Redux store, to implement full user
interface duplication for Observers. The application wide
state of the Master is propagated to the Observers.
Actions affecting the Redux store while the Master is
using the application are captured and sent to the
MXCuBE3 server using redux-persist. The MXCuBE3
server relays these actions to the Observer clients, which
update their state accordingly.

User Interface
The user interface has two principal views for setting

up and running an experiment, Data Collection and
Sample Overview.

The Sample Overview shows the details for a set of
samples. Each sample is represented as a card that
contains information with the results of the data
collections already performed on that sample along with
the measurements that will be collected (see Figure 3).
The sample information is obtained from ISPyB and
synchronised with the sample changer contents. Users can
apply a filter on name or location to display a particular
sample or subset of samples. This provides the user with
an easy way to get an overview of the experiments
performed or yet to be done. It further gives the user an
easy way to set up data collections on multiple samples at
once and run them sequentially in an automatic fashion
(referred to as pipeline mode).

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL05

User Interfaces and User eXperience (UX)
TUBPL05

183

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 3: In Sample Overview crystals are represented as
cards containing sample data

The Data Collection view provides the user with the

necessary controls to perform an interactive data
collection or sample realignment. The user can move the
sample via the goniometer motor controls, located to the
left of the interface, and center the crystal on the rotation
axis by using a 3-click centring procedure. The user can
further interact with the goniometer motors, to reposition
the sample, by using hot keys and clicking in the sample
video (see Figure 4). By interacting directly with the
sample video, users can access tools to save centered
positions, create lines between saved positions or draw a
grid to collect diffraction data over an area. The user is
presented with context menu listing the available data
collection methods available for the type of selection
made (point, line or grid). A top-bar displays experimental
values of the beamline that define the diffraction
experiment, such as energy and detector distance. Data
collections on the currently mounted sample are added to
a queue shown on the right side and their status is updated
while they are performed.

Figure 4: Data collection view, with grid data collection
and result overlay, motor controls to the left, and data
collection queue to the right.

RESULTS
MXCuBE3 has been actively developed during the last

two years. The users experience with MXCuBE2, which
has been in operation during the last five years, inspired
the design and the functionality of the new interface. A

pre-release of MXCuBE3 with a reduced feature set was
used both for the commissioning of BioMAX beamline at
MAX IV, and in subsequent user operation. First user
feedback was very positive and encouraging. Users
regarded the interface as much easier to use compared to
previous versions of MXCuBE and control software in
use at other synchrotron sources. Even less experienced
users easily found their way applying the different data
collection methods. This commissioning phase and user
input have been valuable in subsequent improvement of
the user experience.

Another remarkable result is the synergetic effort that
two independent facilities were able to invest in the
development of MXCuBE3, despite the different short
term needs. The project roadmap have evolved from the
initial planning to accommodate the new priorities.
MXCuBE3 is a successful project thanks to the effort
made by the team to keep the communication channels
active and proactively collaborate.

CONCLUSION AND FUTURE WORK
In the short term, a feature-complete version of

MXCuBE3 will be deployed at the ID29 beamline at the
ESRF, then at its other MX beamlines. This is expected to
happen during October 2017, and will mark the official
release of MXCuBE3. At the same time the MAX IV
BioMAX beamline will also upgrade to the latest version.

Deployment on different end-stations is expected to
drive the finalisation of the user interface and the
implementation of currently available data collection
methods, eventually leading to MXCuBE3.1, which is
foreseen for the second quarter of 2018.

In the meantime we expect that other partners of the
collaboration to profit from the development to install
MXCuBE3 at their sites. In a longer term, MXCuBE3
should evolve to integrate more novel data collection
methods, in particular in the field of serial
crystallography.

REFERENCES
[1] Arzt, S. et al. (2005). Prog. Biophys. Mol. Biol. 89, 124–

152. [PubMed]

[2] MXCuBE 3 GitHub,
https://github.com/mxcube/mxcube3

[3] Daniele de Sanctis, Marcus Oscarsson, Alexander Popov,
Olof Svensson, Gordon Leonard Acta Crystallogr D Struct
Biol. 2016 Mar 1; 72(Pt 3): 413–420. Published online 2016
Mar 1. doi: 10.1107/S2059798316001042

[4] Zander, U., Bourenkov, G., Popov, A. N., de Sanctis, D.,
Svensson, O., McCarthy, A. A., Round, E., Gordeliy, V.,
Mueller-Dieckmann, C. & Leonard, G. A. (2015). Acta
Cryst. D71, 2328–2343.

[5] Weinert T, Olieric N, Cheng R, Brünle S, James D, Ozerov
D, Gashi D, Vera L, Marsh M, Jaeger K, Dworkowski F,
Panepucci E, Basu S, Skopintsev P, Doré AS, Geng T,
Cooke RM, Liang M, Prota AE, Panneels V, Nogly P,

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL05

TUBPL05
184

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

Ermler U, Schertler G, Hennig M, Steinmetz MO, Wang M,
Standfuss J. Nat Commun. 2017 Sep 14;8(1):542. doi:
10.1038/s41467-017-00630-4

[6] Martin-Garcia JM, Conrad CE, Nelson G, Stander N,
Zatsepin NA, Zook J, Zhu L, Geiger J, Chun E, Kissick D,
Hilgart MC, Ogata C, Ishchenko A, Nagaratnam N, Roy-
Chowdhury S, Coe J, Subramanian G, Schaffer A, James D,
Ketwala G, Venugopalan N, Xu S, Corcoran S, Ferguson D,
Weierstall U, Spence JCH, Cherezov V, Fromme P,
Fischetti RF, Liu W. IUCrJ. 2017 May 24;4(Pt 4):439-454.
doi: 10.1107/S205225251700570X. eCollection 2017 Jul 1

[7] Roedig P, Ginn HM, Pakendorf T, Sutton G, Harlos K,
Walter TS, Meyer J, Fischer P, Duman R, Vartiainen I,
Reime B, Warmer M, Brewster AS, Young ID, Michels-
Clark T, Sauter NK, Kotecha A, Kelly J, Rowlands DJ,
Sikorsky M, Nelson S, Damiani DS, Alonso-Mori R, Ren J,
Fry EE, David C, Stuart DI, Wagner A, Meents A. Nat
Methods. 2017 Aug;14(8):805-810. doi:
10.1038/nmeth.4335. Epub 2017 Jun 19.

[8] Uwe Mueller, Marjolein Thunnissen, Jie Nan, Mikel
Eguiraun, Fredrick Bolmsten, Antonio Milàn-Otero,
Mathias Guijarro, Markus Oscarsson, Daniele de Sanctis &
Gordon Leonard (2017) MXCuBE3: A New Era of MX-

Beamline Control Begins, Synchrotron Radiation News,
30:1, 22-27, DOI: 10.1080/08940886.2017.1267564

[9] I. Karpics, G. Bourenkov, M. Nikolova, and T. R.
 Schneider, "Graphical user interface and experiment
 control software at the MX beamlines at EMBL Hamburg",
 in Proc. NOBUGS’16, Copenhagen, Denmark, October
 2016, paper 10.17199/NOBUGS2016.91, pp. 53–58.

[10] NX Technology,
 https://en.wikipedia.org/wiki/NX_technology,
 accessed 2017 Oct 3

[11] M. Guijarro, Hardware Repository,
 https://github.com/mxcube/HardwareRepository

[12] Gabadinho J, Beteva A, Guijarro M, et al., “MxCuBE: a
 synchrotron beamline control environment customized for
 macromolecular crystallography experiments”, Journal of
 Synchrotron Radiation, 2010;17(Pt 5):700-707.
 doi:10.1107/S0909049510020005.

[13] Event Dispathing Thread,
 https://en.wikipedia.org/wiki/Event_dispatch
 ing_thread, accessed 2017 Oct z

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL05

User Interfaces and User eXperience (UX)
TUBPL05

185

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

