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Abstract 
The CERN automation infrastructure consists of over 

600 heterogeneous industrial control systems with around 
45 million deployed sensors, actuators and control objects. 
Therefore, it is evident that the monitoring of such huge 
system represents a challenging and complex task. 

This paper describes three different mathematical ap-
proaches that have been designed and developed to detect 
anomalies in any of the CERN control systems. Specifi-
cally, one of these algorithms is purely based on expert 
knowledge; the other two mine the historical generated 
data to create a simple model of the system; this model is 
then used to detect faulty sensors measurements.  

The presented methods can be categorized as dynamic 
unsupervised anomaly detection; “dynamic” since the be-
haviour of the system and the evolution of its attributes are 
observed and changing in time. They are “unsupervised” 
because we are trying to predict faulty events without ex-
amples in the data history. So, the described strategies in-
volve monitoring the evolution of sensors values over time 
in the historical data. Indeed, consistent deviations from 
the historical evolutions can be seen as warning signs of a 
possible future anomaly; these warning signs have been 
used to trigger a generic anomaly alarm for the specific in-
coherent sensors, requiring further checks by system ex-
perts and operators. The paper also presents some results, 
obtained by the application of this analysis to the CERN 
Cryogenics systems.  

Finally, the paper briefly describes the deployment of 
Spark and Hadoop platform into the CERN industrial en-
vironment to deal with huge datasets and to spread the 
computational load of the analysis across multiple hosts.  

 
 

INTRODUCTION 
The performance of the CERN Large Hadron Collider 

(LHC) relies on the operation of a multitude of heteroge-
neous industrial control systems. More than 600 industrial 
Supervisory Control and Data Acquisition (SCADA) sys-
tems have been deployed for the supervision and monitor-
ing of CERN accelerators chain, detectors and technical in-
frastructure. Currently the stored data volume produced by 
the different industrial control systems exceeds the 100 ter-
abytes per year; nevertheless, the volume of the controls 
data is actually much higher since multiple filters (dead-
bands both in time and value) are applied both at the 
SCADA systems and at the control level (PLCs and Front-
End Computers) in order to reduce the data flow.  

 

The generated controls data, after a proper analysis, con-
stitutes a source of useful information about the current 
state of the processes, their performance, stability and over-
all behaviour. Obviously, an extensive analysis of this mas-
sive data flow requires specialized frameworks to handle 
big datasets and cannot be achieved by operators through 
manual operations. 

The detection of anomalies and disturbances in an indus-
trial process represents a key factor in the quality of the 
overall system [1, 2]. Nevertheless, an anomaly, if not 
properly handled, could lead to a system failure, therefore 
causing a downtime of the entire system. In our scenarios, 
the anomaly detection is strictly connected to the ability to 
identify sensors’ measurements which do not conform to 
the expected patterns; this explains the use of machine 
learning techniques to extract patterns from both historical 
and online data. The correct detection of such types of un-
usual behaviours allows system experts to take actions in 
order to avoid, correct and react to the situations associated 
with them.  

The temporal aspect plays an important role in the anal-
ysis of control data; in this domain time series data repre-
sents the main object of analysis in order to detect regular 
patterns against the sensors’ measurements as described in 
[3]. In recent years a growing attention has been paid to 
online knowledge discovery and data mining (KDD) tech-
niques [4] for multivariate time series data.  In the systems 
analysed, the change point or anomaly detection from data 
streams was an unsupervised learning task, which aimed at 
deciding whether the new generated sensors’ measure-
ments showed a different trend from the historical refer-
ence.    

In this paper, we address the problem of change point 
detection for streams of multivariate time-series data. Spe-
cifically, this paper describes three different algorithms for 
online detection of faulty measurements that have been de-
veloped and integrated into the CERN control system as a 
continuous monitoring task of the machine operation. Once 
these analyses have been deployed, the system experts are 
notified on specific issues or possible anomalous condi-
tions through the generation of alarms. To achieve the 
aforementioned task the proposed solutions are based on 
unsupervised techniques due to the lack of labelled training 
data.  

The last sections of the paper present a comparison of 
the three developed algorithms and some anomalies de-
tected through the analysis of the CERN cryogenics control 
system.  
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FAULTY SENSORS DETECTION IN THE 
CRYOGENICS SYSTEM  

The presented analyses mainly focused on the LHC cry-
ogenics system. It plays a fundamental role to keep the 
magnets and the RF cavities under superconducting state, 
which allows an electric current to pass almost without re-
sistance and avoid the joule heating effect. Actually, 27 km 
of superconducting magnets have to operate in superfluid 
helium below the temperature of 1.9 K. The cryogenics he-
lium distribution line consists of 8 sectors with a length of 
about 3.3 km each. As a result of that, the cryogenics con-
trol system is highly distributed and made of heterogene-
ous devices. However, since each sector is operationally 
autonomous, a similar behaviour is expected across the en-
tire system. A large number of industrial sensors, electronic 
conditioning units and actuators (mainly heaters and 
valves) are deployed in the cryogenics control system. 
Moreover, those components located in the LHC tunnel 
have to properly operate in a hostile radiation environment 
in order to deliver reliable measurements. The cryogenics 
process control logic consists of more than 4700 control 
loops executed in 80 PLCs which are connected to a mul-
titude of I/O channels; the specific numbers are shown in 
the table below as documented in [5]: 

 
Table 1: LHC Cryogenics I/O and CCL 

 Tunnel Production Total 
Analog Inputs 12136 9200 21336 

Analog Outputs 4856 2152 7008 
Digital Inputs 4536 13820 18356 

Digital Outputs 1568 2644 4212 
Control Close Loop 3680 1024 4704 
 
The above given description underlines both the critical-

ity and the complexity of the cryogenics system whose en-
tire cooling process consists of three different stages and 
takes almost one month to complete. The signals’ hetero-
geneity is another important aspect which increases the 
complexity of the problem. The analysis exploits the well-
defined control system structure to discover possible sys-
tematic relationships among different signals; these rela-
tionships can be classified in 2 main categories: 

• Physical relationships: two or more sensors de-
ployed in the same sector or even in the same cell 
should not differ much in value (like to temperature 
sensors in contiguous cells). 

• Logical relationship: the control loops regulate 
some output signals as a function of some input sig-
nals.  

Both classes of these relationships need to be discovered 
within the controls data in order to make a model of the 
system. The latter can be then used to detect change points 
that are distance from the reference state. It is worth noting 
that the cryogenics sensors’ values are highly dynamic: dif-
ferent machine runs can show completely different trends 
depending on the operational mode and energy of the HC. 
For this reason, the existing alignment techniques [6, 7] 

cannot be used to calculate the “anomaly score” (that is the 
distance from the reference state) over multiple machine 
runs (or time intervals). On the contrary, the machine learn-
ing process must continuously keep the model in line with 
the dynamic of the control system. As it will be described 
in the following paragraphs, this has been achieved through 
an incremental learning methodology that uses the streams 
of input sensors’ data to extend the existing model.  

ANALYTICAL SOLUTIONS 
The following paragraphs will present three different al-

gorithms that have been developed and integrated into the 
control system for online detection of faulty sensors. The 
three algorithms make use of different techniques to extract 
patterns from the historical data; these patterns are then 
compared against the input stream of measurements for 
online anomaly detection. 

Anomaly Detection by Sensors Correlation and 
Conditional Nearest Neighbours 

The main idea of this algorithm is to group the large list 
of sensors and actuators into different clusters based on the 
previously described logical and physical relationships. In 
order to find these relationships, the historical data are 
mined and a correlation matrix is computed. As shown in 
the equation below the Pearson correlation coefficient is 
used: =  , =  , ℎ : , ,    ℎ    ℎ      ℎ   . 
 

If the standard deviation of the single signals is close to 
zero, then the Kronecker’s delta function is used instead: = = 0,   ≠1,   = , ℎ  ,   ℎ    ℎ    

 
This kind of formulation is able to properly deal with 

different sensors parametrization, calibrations and offsets. 
However, as one can see from the formulations above, the 
use of the Pearson correlation coefficient implies a linear 
dependency among the sensors; nevertheless, this limita-
tion could be overcome by extracting some linear features 
from the initial raw values or by projecting them in to a 
linear domain. In the study conducted for the cryogenics 
system, the linearity limitation did not constitute an issue 
since multiple linear relationships have been discovered 
among the input signals.  

In the literature, many studies [8, 9] represent streams of 
time series data into weighted graphs where each node cor-
responds to a specific signal and each edge shows the sim-
ilarity between a pair of signals. The proposed method 
adopts a similar approach by defining a K-Nearest-Neigh-
bour graph [10] based on the computed correlation coeffi-
cients; precisely the distance between signals, represented 
by the graph edges, is calculated as follows: 
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= − ln  
 

Therefore, the distance between highly correlated sig-
nals will be close to zero and for uncorrelated signals will 
tend to infinity. ‘K’ represents the dimension of the graph 
and theoretically should be chosen as the minimum size of 
the highly correlated clusters. The accuracy of KNN 
method can be severely degraded with high-dimension 
clusters because of the difference between the nearest and 
farthest neighbours (increase of the inner-cluster distance). 
Furthermore, increasing the size of the graph leads to an 
increment of the computational complexity of the KNN 
graphs. In our scenario, after some initial test, ‘k’, the num-
ber of correlated signals in each graph, was set to 3. During 
the analysis of the cryogenics system most of the unim-
portant fluctuations in the measurements under nominal 
operation did not affect highly correlated pairs of signals.  

In order to evaluate each significant change in the signals 
(change point analysis), the following dissimilarity func-
tion was defined: ( ) = ∑ ∗ ( | ),  where: (j|i) = probability of j to be in the KNNi ℎ 
 

The so-defined expected dissimilarity of each signal is a 
function of the previously described distance between the 
nodes in the KNN graph and the probability of the sensors 
to be in the same cluster (KNNi) during different time win-
dows.  

In our scenario, the conditional entropy  quantifies the 
amount of information needed to describe the value of a 
signal sj, given that the value of another signal si is known. 
The conditional entropy is equal to zero if the value of the 
sensors sj is completely determined by the value of si: = − ( | ) ln ( | )∈ ∪  

Consequently, the probability distribution can be calcu-
lated as a minimization problem introducing the La-
grange’s multipliers for the conditional entropy between 
the sensors: ( ) −  = 0  →  ∑ ( | ) − = 0   

→  − − ∑ ( | ) ln( ( | ) = 0 + ln ( | ) + 1 = 0 →  ( ( | )) = −  →    ( | ) =  →  ( | ) =  
 

In order to have a meaningful probability value within 
the range [0, 1] the probability normalization condition has 
been imposed: 

 ( | ) +  ( | ) = 1∈  

 
Therefore, the probability related to each pair of signals 

can be calculated as: ( | ) = 1 + ∑  

 
The faulty sensor detection was achieved by detecting 

any change exceeding a predefined threshold in the dissim-
ilarity function for each KNNi graph. Due to the high dy-
namic of the system, the learning process continuously up-
dates the KNN-based model, which is used as a reference 
during the online fault detection analysis. 

Anomaly Detection by Stochastic Clustering of 
Sensors Measurements 

This algorithm aims at detecting faulty sensors by clus-
tering them into different partitions based on their histori-
cal measurements. The clustering is based on K-Means 
[11] method by splitting the historical data sets into time 
windows; by limiting the size of the signals analysed the 
computational load and the execution time are reduced. 

 Due to the presence of different sensors calibrations it 
was necessary to standardize the data. Therefore, for each 
time window, the mean of each signal is subtracted from 
each measurement and then divided by the standard devia-
tion to remove any scaling effect.  

One of the main disadvantages of K-Means is having to 
provide as a parameter the number of clusters. To over-
come this issue and optimize the choice of this parameter 
the Davies-Bouldin index [12] was used. This index tries 
to minimize the intra-cluster distance and at the same time 
maximize the inter-cluster distance. This allows to isolate 
in a single cluster only those sensors/actuators with similar 
behaviour and, at the same time, very different from other 
signals clusters. In order to find the optimal cluster number, 
the algorithm is running multiple times increasing it in each 
execution. The execution ends when the difference be-
tween the standard deviations of the intra-cluster distances 
is less than a specific threshold. The latter is calculated for 
two contiguous execution as follows: 

 

, =  ∑ ∑ −  ∑ ∑ −   , ℎ : 
• ,   ℎ    ℎ    −   ℎ    − 1  
•   ℎ    ℎ    ℎ   
•   ℎ    ℎ    ℎ    ℎ      

 
Moreover, the time window length was selected trying 

to maximize both the number of clustered signals and the 
probability to find each cluster in multiple time windows. 
To achieve it, a quality index of the analysis has been de-
fined. Let NSC be the number of signals clustered and N 
the total number of signals. Then, for a time window with 
the chosen parameter p (number of seconds), the quality Q 
of a time window is defined as: 

 = ∗ ,∀ , ℎ    ℎ      
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 ℎ    
 
Let Q be the quality of a time window with parameter p 

(number of seconds), MPCS the minimal percentage of 
clustered signals, MPC the minimal probability of each 
cluster and MIQ the minimal increment of quality index for 
the time window optimization; then the thresholds are de-
fined as follows: 

, = > ∗ MPC− <   

 
The result of this phase is a probability model of the most 

frequent (across all the time windows) signals clusters.  
Since there is a binary possibility to find a cluster in each 
time window, then the binomial model can be applied. Let 

 be the probability of the cluster ,  the number of 
time windows,  the number of success for the cluster  
and  the binomial random variable, then the binomial dis-
tribution model can be defined as: 

 = = ∗ ∗ (1 − )  
 
If the expected value of the binomial distribution of any 

cluster is changing more than a defined threshold then an 
alarm is generated. 

Anomaly Detection Based on Experts’ 
Knowledge 

This algorithm has been entirely based on experts’ 
knowledge; the latter has been translated into mathematical 
conditional equations in order to detect if an actuator’s be-
haviour deviates from the actuators of the same type 
(mainly valves). Specifically, the system experts defined a 
list of static “actuators groups/clusters” within the cryogen-
ics distribution line that should behave almost identically. 
If one or several actuators show a different operational pat-
tern than the rest of the group, it could represent a potential 
fault. Most of actuators in a group can have different abso-
lute values but their derivatives should be similar. This is 
why after an initial first order filtering of the signals, the 
derivatives of the signals are computed. The so obtained 
derivatives are then grouped into global statistical indexes 
(i.e. the average of the signal group derivatives). An alarm 
is generated if the difference between the single signals in-
dexes and the global indexes exceeds specific thresholds 
(also defined by the system experts).   

PARALLELIZATION OF THE ANALYSES 
A massive amount of computational resources is neces-

sary to analyse the data produced by the CERN control sys-
tems. Any naive attempt of using standalone scripts or even 
single node applications results ineffective due the limited 
amount of resources, like I/O bandwidth, memory con-
sumption and CPU load. Consequently, a cloud computing 
approach would match the computational requirements to 
run the analysis. This is why the described algorithms have 
been implemented as Spark [13] jobs and executed against 

the CERN Hadoop [14] cluster. Particular attention has 
been paid to parallelize the execution of such algorithms, 
showing the positive benefits of scaling the analysis across 
multiple nodes. Moreover, the lightweight portability of 
the spark jobs solves any deployment issues related to dif-
ferent execution environments. 

All three presented methods combine measurements of 
multiple signals to detect anomalies in the control system. 
Therefore, the multivariate nature of the analyses (MVA) 
influenced the strategy of spreading the signals’ datasets 
across different Spark nodes. More precisely, each cluster 
or group of signals has been loaded within the same node; 
this avoids any shuffling and communication overload 
among the Spark nodes. Moreover, a time window ap-
proach has been adopted to avoid keeping in memory mas-
sive datasets and to reduce the computational load; on the 
contrary, depending on the time window length, only a por-
tion of the dataset was kept in the nodes’ memory for the 
analysis. 

Spark provides data scientist with high-level APIs in 
Scala, Java, Python and R development languages. Unfor-
tunately, the Cloudera distribution currently installed at 
CERN does not support R. Python was chosen mainly be-
cause of the large number of modules and packages that are 
readily available for signal processing. Specifically, 
NumPy [15] and SciPy [16] have been combined with 
Spark Python API to deal with multidimensional arrays and 
implement algebraic operations. 

ALGORITHMS COMPARISON  
AND VALIDATION 

Due to the unsupervised nature of the analysis and the 
lack of an anomaly database, the three aforementioned al-
gorithms have been tested and compared through the use 
of synthetic data. Specifically, the sensor faults have been 
classified as following: 

• Spike: a single faulty measurement which is abnor-
mally high/low if compared with the range of values 
next to it (i.e. a temporary glitch). 

• Step: a temporary degradation of the signal which 
results in a step function. 

• Noise: the signal deviates from its normal pattern 
for multiple measurements.  

• Flipping: a special case of the noise fault, where the 
signal is passing from a high value (higher than the 
proximity values) to a low one (lower than the prox-
imity values). 

• Offset: offset that alters in a constant manner the 
sensors values (e. s. wrong calibration).  

 
For each of these anomaly types multiple faulty meas-

urements have been generated (synthetic data) with differ-
ent frequency and amplitude. Therefore, the three algo-
rithms have been compared by computing the confusion 
matrix containing: positive predictive value (PPV), nega-
tive predictive value (NPV), sensitivity (Sens), specificity 
(Spec) and accuracy (Acc). The PPV and NPV values re-
flect respectively the precision at detecting true positives 
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TP and true negatives TN. The Sens and Spec indexes rep-
resent the ratio of actual TP/TN which are correctly identi-
fied. Finally, the accuracy value shows the portion of cor-
rect predictions. They are calculated as functions of the 
number of true/false positives (TP/FP), the number of 
true/false negatives (TN/FN): 

 = ∑∑ ∑  , = ∑∑ ∑   , 
 = ∑∑ ∑  , = ∑∑ ∑  ,   = ∑ + ∑∑ + ∑ + ∑ + ∑  

 
Figure 1 represents these different indexes for the three 

algorithms previously described. As one can notice from 
Figure 1 the three algorithms are able to detect different 
anomaly types without changing the input parameters. The 
stochastic and NN (SNN) and the Expert’s knowledge 
(EK) algorithms have a lower PPV for different reasons. 
The SNN algorithm generates a higher number of FP be-
cause a change in one of the cluster affects the calculus of 
the centroids of the rest of clusters; the EK algorithm is 
really specialized at detecting the faults defined by the ex-
perts, but not general enough to detect new types of faults; 
this latter point explains why it also achieves the lowest 
sensitivity value, which represents the anomaly ratio cor-
rectly identified. On the other end, the EK method reaches 
the highest specificity value since it generates less FP.  

From the performed evaluation, the correlation and NN 
algorithm demonstrate to be the more robust and at the 
same time general method. 

 

 
Figure 1: Comparison of the algorithms. 

FAULT DETECTION ANALYSIS FOR THE 
LHC CRYOGENICS SYSTEM 

As mentioned in the previous chapters the main subject 
of the presented analyses was the LHC cryogenics system. 
The analysis has been applied for anomaly detection in the 
cryogenics 1.8 K cooling loops, the beam screen cooling 
loops and current leads.  

The following pictures show different faulty patterns 
that have been detected by the analytical algorithms. Spe-
cifically, Figure 2 displays a noisy movement of one actu-
ator, while the others are mostly constant along the full 

time window. During the learning phase the actuators were 
clustered together due to their historical behaviour. The 
anomaly was detected because one of the signals (the one 
in black) starts moving in an uncoordinated way with re-
spect to the others. 

 

 
Figure 2: Flipping fault detection in a cluster of cryogenics 
valves. 
 

Figure 3 shows another type of signal fault with the 
shape of a step function; the signal in black changed its off-
set for a limited period of time before returning to its nom-
inal state. Similar behaviours have been frequently discov-
ered during the actions of an operator overriding the pro-
cess control output. Even in this case, the necessary human 
manual action can be interpreted as a control process 
anomaly.  
 

 
Figure 3: Step fault detection of one cryogenics actuator. 

 
In specific, isolated cases some process instabilities have 

been discovered. Figure 4 clearly depicts this situation 
where the valve shows an unstable oscillatory behaviour to 
control the temperature process. Obviously if this faulty os-
cillation had been present in all signals then it would not 
have been detected by the clustering algorithms, but only 
by the experts’ knowledge formulation. However, in our 
scenario the probability of a faulty situation involving mul-
tiple signals at the same time was almost close to zero. 
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Figure 4: Multiple signal oscillation detection of a cryo-
genics valve. 
 

In Figure 5, one of the cryogenics valves shows a faulty 
range of movement if compared to the other actuators. This 
excessive movement of the valve can be seen as an ineffi-
ciency of the control process, or most probably due to an 
abnormal heat load in the cell, or even a wrong mechanical 
valve setting. The algorithms detect the operational anom-
aly but they are not able to identify the root cause; a direct 
intervention from the system expert is necessary to fully 
understand the nature of the problem. 

 

 
Figure 5: Faulty signal amplitude detection of a cryogenics 
valve.  
 

In the last example, one of the actuator changes its offset. 
Figure 6 underlines the ability of the analytical algorithm 
to detect any change in the parametrization of sensors/ac-
tuators. 

 
Figure 6: Signal offset detection of a clustered valve. 

The above examples demonstrate the algorithms’ ability to 
detect different types of anomalies that may affect the con-
trol systems. Moreover any change or upgrade in the sys-
tem will be automatically be handled by the continuous 
learning phase without any direct intervention from engi-
neers. Currently the analyses have been implemented as 
Spark jobs; they are daily executed to monitor several thou-
sands of sensors and actuators, which otherwise could not 
been manually checked. The detected anomalies are pub-
lished in a CERN internal website that engineers and oper-
ators can consult. Furthermore a specialized reporting tool 
has been designed and implemented in order to show the 
analytical results directly into the SCADA (Supervisory 
Control and Data Acquisition) applications at CERN [17]. 
The detection of these anomalies has allowed engineers to 
improve the tuning of thousands of regulation loops and 
reduce undesirable mechanical movements (e.g. wearing 
of valves due to abnormal opening/closing).   

CONCLUSION AND FUTURE WORK 
The paper describes three different algorithms that have 

been developed and integrated into the LHC control system 
for online detection of faulty sensors. Different data mining 
techniques have been used to extract patterns from the his-
torical data; these patterns are then used for online anomaly 
detection. The three algorithms have been compared to un-
derstand their advantages and disadvantages. From this 
comparison, it is evident that the use of machine learning 
techniques makes the anomaly detection more generic and 
suitable for dynamic systems, since they are able to iden-
tify class of errors initially not foreseen by the experts. Fi-
nally, the usefulness of the presented methods has been 
demonstrated with real control data produced by the LHC 
cryogenics system. Nevertheless, the analytical solutions 
are so generic that they can be applied for anomaly detec-
tion in any other CERN domains. 

As possible future work, these anomaly detection algo-
rithms could be combined with a root-cause analysis. Cur-
rently, once an anomaly is discovered, it requires the man-
ual investigation of an operator or system expert to identify 
their root cause. This last process could be partially autom-
atized or supported by other analytical processes.  
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