
SwissFEL - BEAM SYNCHRONOUS DATA ACQUISITION –
THE FIRST YEAR

S. G. Ebner, H. Brands, B. Kalantari, R. Kapeller, F. Märki, L. Sala, C. Zellweger,
Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Abstract
The SwissFEL beam-synchronous data-acquisition sys-

tem is based on several novel concepts and technologies.
It is targeted on immediate data availability and online
processing and is capable of assembling an overall data
view of the whole machine, thanks to its distributed and
scalable back-end. Load on data sources is reduced by
immediately streaming data as soon as it becomes availa-
ble. The streaming technology used provides load balanc-
ing and fail-over by design. Data channels from various
sources can be efficiently aggregated and combined into
new data streams for immediate online monitoring, data
analysis and processing. The system is dynamically con-
figurable, various acquisition frequencies can be enabled,
and data can be kept for a defined time window. All data
is available and accessible enabling advanced pattern
detection and correlation during acquisition time. Access-
ing the data in a code-agnostic way is also possible
through the same REST API that is used by the web-
frontend. We will give an overview of the design and
specialities of the system as well as talk about the find-
ings and problems we faced during machine commission-
ing.

OVERVIEW
As described in the general SwissFEL paper [1], there

are two categories of data to be dealt with at SwissFEL,
namely synchronous and asynchronous data. This paper
will only focus on the synchronous part of the system
although both are using same/similar infrastructure and
software.

Figure 1: Basic building blocks.

As shown in Figure 1 the beam synchronous data ac-

quisition system consists of simple basic building blocks.
Each block will be described in detail in the following
sections.

The beam synchronous data acquisition system consists
of two independent subsystems dealing with small (sca-
lars and waveforms) and large data (cameras, detectors).
Both subsystems consist of the same building blocks
although different software components are used. The
differences we will be outlined in the respective sections
below.

Sources
All beam synchronous sources are connected to the

central SwissFEL timing system [2]. The realtime timing
system distributes the readout triggers as well as the
unique pulse-id for each FEL pulse. After reading out the
data upon receiving a readout trigger, the sources imme-
diately attach the corresponding pulse-id to the data and
send out an atomic message including all readout data and
pulse-id.

Each readout value of a source is called channel and a
source can have various channels.

Each source can be dynamically configured via a REST
API, i.e. what channels to read out and in what frequency,
without the need of reboot or restart.

A source can be implemented in various ways. At the
moment, there are sources implemented as Epics IOCs
and real-time applications running on a real-time Linux at
SwissFEL.

Synchronization / Dispatching
Data send out by the sources is received by the Dis-

patching layer. For small data, this layer consists of cur-
rently twelve machines that form a cluster with the ability
to synchronize data on the fly.

Clients can transparently request synchronized streams
of channels coming from different sources via a REST
API from this layer. Upon a client request, the Dispatch-
ing layer creates a customized data stream for the client as
if it would originate from a single source. This technique
frees the client from synchronizing data on its own.

Once the client disconnects from the custom stream, the
Dispatching layer takes care that the stream gets closed
and all required resources are cleaned up.

The Synchronization and Dispatching layer decouple
the sources from the clients. Therefore, sources are pro-
tected from being overwhelmed by client requests.

Beside the ability to synchronize data and provide cus-
tom streams this layer also forwards all data to the buffer-
ing layer that is hosted on the same machines.

For large data this layer currently consists of currently
one machine taking care of the receiving of camera data,
compressing the images, doing (optional) standard analy-
sis on the data and passing the data on to the large data
buffering system.

Buffering
The Buffering layer temporarily stores all beam syn-

chronous data for later retrieval. At the time of writing,
the retention period of data inside the buffer is two days
for scalar values, two hours for waveforms and two hours
for images.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPA06

TUCPA06
276

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Analytics

After this time, data is being reduced to 1 Hz and is
kept for one additional month until it is discarded.

Next to the default retention policies, users can register
custom retention policies, i.e., the retention time and
reduction algorithm can be specified for individual or
groups of channels.

Data can also be tagged manually to be kept for longer.
This is done for example for RF data once a breakdown is
detected for a cavity.

For buffering small data, we currently use a cluster of
twelve machines with local SSD storage. For buffering
large data, we use one machine connected via Infiniband
to a GPFS filesystem.

We use a proprietary file based persistence approach for
the data to be buffered. Each channel is stored in a single
file which is rotated after some time.

Both buffering systems can be queried and data can be
retrieved via a REST API. The exact same API can also
be used by users to query non beam synchronous data

Online Analysis / Feedback
Online analysis and feedback enables users to see, ana-

lyse and react to the incoming data. This kind of applica-
tions request and use a customized stream of data with all
required channels from the synchronization and dispatch-
ing layer. By doing so the amount of coding needed boils
down to simply implement the analysis and/or visualiza-
tion logic.

Right now we have various applications in this layer
ranging from Python, Java and Matlab. Some of the ap-
plications used are presented in [3].

Communication Protocol
The communication protocol used for transferring data

between the components is called BSREAD. It is based
on ZMQ [4] and follows a design used and established for
large scale detectors at the Paul Scherrer Institute. Data
transmitted with this protocol is self-describing and
makes use of the multipart message feature of ZMQ.

For each machine pulse there is one message send from
a sender (see Figure 2).

Figure 2: Message.

The first part (sub-message) of the message consists of
a JSON string holding the protocol version, the pulse-id,
global timestamp and a hash and compression of the next
sub-message of the message.

The second part of the message consists of a JSON
string holding an ordered dictionary for each channel
transmitted for this pulse with the name of the channel,
type, number of elements, compression and other metada-
ta.

The remaining sub-messages of the message consist of
the individual channel values and timestamp (each a sub-
message) in the sequence the channels are mentioned in
the data header.

Right now we are supporting bitshuffle-lz4 [5] com-
pression for data and data header. We apply compression
to images and waveform data of a specific size. We can
reach compression factors up to 5.

While using the ZMQ protocol, we make use of the
built-in delivery schemes push/pull and pub/sub to
achieve failover and load-balancing.

Web Frontend
Data within the buffering system can be browsed using

a web UI (see Figures 3, 4, 5).
The web UI sits on top of the exact same REST API

exposed by the buffering systems to extract data from it.
To allow fast and responsive browsing of data, we ap-

ply simple but powerful data reduction on the server side.
For example, if a query for a channel returns more than

512 data points, we use data binning and calculate the
min, max and mean value for each bin and show this
reduced data instead.

Using this approach, we avoid transmitting large
amounts of data points that cannot be displayed accurate-
ly on the client’s machine as the screen resolution is not
high enough. Also, this positively impacts user experience
as the UI remains responsive, even for large amounts of
underlying data.

Figure 3: Web Frontend showing scalar data.

The same reduction is applied for waveform data. In-

stead of transmitting the whole waveform for each data
point, we only transmit the min, max and mean value of
the waveform. And again, if more than 512 data points are
queried/visualized, we additionally start binning and
calculate the bin’s min, max and mean.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPA06

Data Analytics
TUCPA06

277

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 4: Web Frontend browsing waveform data.

In case the user needs to see the raw value, he can in-

teractively zoom into the data by holding a specified
keyboard key. This will reload the data only for the zoom
range and apply the same reduction procedure described
as before until the raw data is reached.

Figure 5: Web Frontend browsing image data.

For efficiently visualizing images from the ImageBuff-

er in the web UI similar binning and reduction approaches
are applied. We generate and transmit a PNG image on
the server side unless the raw data of a single image is
requested. This has been shown to be much quicker than
transmitting raw data and displaying this data in a 2D
fashion using a plot library. To further improve respon-
siveness and loading time, lazily loading of images, based
on the user’s scroll position, has been implemented.

The Web UI can also be used to query non beam syn-
chronous data from the Epics Channel Access Archiver.
This way users are able to (roughly) correlate non syn-
chronous and synchronous data within the same tool.

Implementation
The implementation of the various systems is done in

different programming languages.
Current production sources are implemented in C and

C++. For testing and verification, we have Python and
Java implementations.

The Synchronization / Dispatching as well as the Buff-
ering layer and all REST APIs are implemented in Java.
We are extensively using Java 8 streams and asynchro-
nous processing. Here, the most important libraries we
use: SpringBoot [6], Netty [7], Hazelcast [8], Jeromq [9],
and Bittshuffle-lz4.

For the online analysis we are providing a Python li-
brary that can be used by scientists. This library is also
used from within Matlab through the Matlab/Python in-
terface.

The web frontend is implemented in Polymer [10]. For
plotting, we are relying on the Javascript-based plotting
library plot.ly [11].

LESSONS LEARNED
There are a lot of lessons learned for the first year of

operation. Generally, we can distinguish between tech-
nical and human/social lessons learned.

Technical
The most important technical findings are:

 Keep things clean, slim and simple. This includes
the reduction of system interfaces as well as depend-
encies to libraries and frameworks. Over the course
of a year we replaced our Cassandra based storage
with a custom file-based storage. In order to achieve,
e.g. data locality, we had to circumvent built-in fea-
tures of Cassandra. Although we lost some (nice to
have) features which Cassandra provided out of the
box, we immediately saw a ten- to hundred-times
performance gain and ended up with less code.

 Have well defined REST APIs rather than libraries
for special programming languages.

 Avoid data copies. In Java use direct byte buffers
and operate on bytes for performance critical code.
An efficient way to avoid data copy from the net-
work stack is the use of the Netty.io library.

 Compress data. Compressing data while transmit-
ting and storing greatly improves performance.
Bitshuffle-lz4 is a very good compression for most
the cases.

 Avoid premature optimizations. A comment we
hear often is that transmitting information via JSON
is inefficient. In none of the components is this an is-
sue or the limiting factor. Using a different serializa-
tion would make things more complicated. Also op-
timizations we introduced at the beginning based on
the frequency of incoming data proved to be coun-
terproductive and caused a lot of issues as it turned
out that certain sources do not send data regularly.

 Use asynchronous processing and concepts. The
use of (Java) asynchronous data processing and con-
cepts speed things up significantly and lets the sys-
tem behave more responsively.

 Use Solid State Disks (SSD). Data access pattern of
buffering (and archiving) systems are random I/O

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPA06

TUCPA06
278

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Analytics

especially for data recorded recently. SSDs are ideal
for these non-regular access patterns.

 Spend (lots) of time on the (web) UI. Having to
deal with tons of data the (web) UI has to be careful-
ly designed and implemented. Without clever data
reduction and interaction, a responsive UI and satis-
factory user-experience is not possible.

 Testing. Although testing is very time consuming, it
is key to the success of the system. Every time an er-
ror occurs, add unit tests to reproduce, fix and test
for the error. Lots of errors cannot be tested on test
systems via unit and integration tests upfront, some
only occur on the live system. Therefore, set aside
time for such production-level issues.

 Collect statistics. Statistics are first class data to col-
lect and store. Information on whether/when chan-
nels are connected/disconnected, how many times a
connection was dropped, and data is accessed, are all
important for operating such a system. Also the de-
tailed knowledge on up and downtime of the sys-
tem(s) are essential to draw the right information out
of data.

Human / Social
The most important human/social findings are:

 Mindset. People are not (yet) accustomed to the
large amount of data collected and provided by the
beam synchronous data acquisition system. In gen-
eral, the issues that arise with “big-data” are mas-
sively underestimated. Often people complain that
data access is very slow, not realizing that they re-
quested multiple Gigabytes or even Terabytes of da-
ta.

 Data retention policy required. Dealing with vast
amounts of data, what is needed is a dedicated data
owner who defines a retention and reduction policy.
Without this, large amounts of money and resources
will be wasted.

 Be prepared. Problems and issues of other systems
will first be visible in the DAQ and buffering system.
Therefore, always collect and keep statistics and
metrics to help in pin-pointing the issue.

 Documentation. Keep documentation accessible,
simple and in a copy/paste manner. This helps peo-
ple especially when dealing with the large amount of
data.

 The design/implementation/support of the soft-
ware ecosystem around the DAQ system is as im-
portant as the DAQ system itself. Without the
proper tools, libraries, infrastructure, support, etc.,
people will be lost and won’t be able to work effi-
ciently. A decent amount of time and resources are
required to teach and support users to deal with the
system.

CONCLUSION
The SwissFEL beam synchronous data acquisition sys-

tem has been in production use for about one year.
While keeping the system up and running, we imple-

mented various major changes to accomplish the tasks at
hand and improve the performance and stability of the
system.

Although not all data sources are in place we are confi-
dent that the current system will be stable, resilient and
able to cope with the final load once all sources are up
and scientific experiments are running.

ACKNOWLEDGEMENT
The SwissFEL beam synchronous data acquisition sys-

tem is the result of an effort of many people, in addition
to the present authors. We hereby gratefully acknowledge
their valuable contributions to this project!

REFERENCES
[1] C. Milne et al., “SwissFEL: The Swiss X-ray Free Electron

Laser”, Applied Sciences (Switzerland), vol. 7, no. 7, arti-
cle no. 720, doi:10.3390/app7070720.

[2] B. Kalantari and R.Biffiger, “SwissFEL timing system:
first operational experience”, presented at ICALEPCS’17,
Barcelona, Spain, Oct. 2017, paper TUCPL04.

[3] A. Gobbo and S. Ebner, “PShell: from SLS beamlines to
the SwissFEL control room”, presented at ICALEPCS’17,
Barcelona, Spain, Oct. 2017, paper TUSH102.

[4] ZeroMQ, http://zeromq.org

[5] Bitshuffle-lz4,
https://github.com/kiyo-masui/bitshuffle

[6] Spring Boot,
http://projects.spring.io/spring-boot/

[7] Netty, http://netty.io

[8] Hazelcast, https://hazelcast.org

[9] Jeromq, https://github.com/zeromq/jeromq

[10] Polymer, https://www.polymer-project.org
[11] Plot.ly, https://plot.ly

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPA06

Data Analytics
TUCPA06

279

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

