
REPRODUCE ANYTHING, ANYWHERE: A GENERIC SIMULATION
SUITE FOR TANGO CONTROL SYSTEMS*

S.Rubio-Manrique, S.Blanch-Torné, M.Broseta, G.Cuní, D.Fernández-Carreiras,
J.Moldes, ALBA-CELLS Synchrotron, Barcelona, Spain

Andrew Götz, ESRF, Grenoble, France

Abstract
Synchrotron Light Sources are required to operate on

24/7 schedules, while at the same time must be
continuously upgraded to cover scientists needs of
improving its efficiency and performance. These
operation conditions impose rigid calendars to control
system engineers, reducing to few hours per month the
maintenance and testing time available. The SimulatorDS
project has been developed to cope with these restrictions
and enable test-driven development, replicating in a
virtual environment the conditions in which a piece of
software has to be developed or debugged. This software
provides devices and scripts to easily duplicate or
prototype the structure and behaviour of any Tango
Control System, using the fandango python library to
export the control system status and create simulated
devices dynamically. This paper will also present first
tests using multiple SimulatorDS instances running on a
commercial cloud.

INTRODUCTION
The classical paradigm for building a simulation

infrastructure is the development and prototyping of a
new control system, a period in which a software team is
already committed to the development of a complex
system but doesn’t have yet access to the real hardware
nor infrastructural resources[1].

Software Testing Techniques
Continuous Delivery and other widespread

methodologies emphasize the importance of delivering
well-tested systems to operators, as it will build
confidence over the delivered system[2]. The two most
common techniques for software testing are Unit Testing
and Functional Testing.

Unit testing is a well established technique in the
software field for validating libraries and API's; based on
breaking up library components in basic software
procedures that can be validated against well specified
interfaces. It’s widespread and well-established, but costly
to apply in already existing or inherited projects where
documentation may be scarce or outdated.

Functional testing instead proceeds to test the different
parts of the application behaviour, validating that each of
the functionalities of the program behaves according to
the expected results. Depending of the scope and
objective of the tests it can be known as integration
testing, regression testing, usability testing, smoke
testing, sanity testing amongst others.

PySignalSimulator
In the case of most control systems, it is not possible to

do a functional test without a certain capability to
simulate the hardware system to be controlled.

The PySignalSimulator Tango Device Server was
developed to cover these needs during ALBA Synchrotron
construction phase. It provided an easy-to-configure[3]
generic simulation tool for testing graphical applications.
Based on single-line formula definitions stored in the
Tango database (Table 1), it allowed to simulate hardware
and to test the control system infrastructural services, like
archiving[4] or alarms[5]. The success of this approach
enabled other Tango Collaboration[6] members like MAX
IV to reuse our developments during its design and
development phases.

Table 1: Dynamic Attributes as Declared in Tango DB

Square=0.5+square(t) #(t = seconds since the device
started)

NoisySinus=2+1.5*sin(3*t)-0.5*random()

SomeNumbers=DevVarLongArray([1000.*i for i in range(1,10)])

But, once ALBA Synchrotron entered in operation, new
necessities appeared for simulators that a simple approach
like PySignalSimulator was not able to cover. For a
facility in a growing phase like ours, upgrades of the
control system are required monthly, in systems as critical
like Linac injection modes, Radiofrequency upgrades,
orbit feedback improvements, … Upgrades that must be
applied without interrupting the current operation
schedule of 5912 yearly hours of beam for users, a
constrain that limits the availability of hardware for
testing to a few hours per month.

This lack of testing time availability created the need of
an automated way of validating updates by replicating a
running Tango Control System in a test environment.

SIMULATORDS
Several studies [7] has been done on the advantages of

using simulation environments for software development.
These works have pointed out that the effort of building a
fully detailed model is often hardly justifiable if the work
needed to implement a simulation environment must
doesn’t tend towards 0.

This lack of profitability of simulation environments is
often caused by the impossibility to replicate the real
hardware infrastructure or the obsolescence of the
simulation design, as real systems tend to change a lot
during building phases.

The SimulatorDS [8] package has been developed to
overcome these certain limitations of the model-based

__

* Work supported by the Tango Consortium and the European
Synchrotron Radiation Facility

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUDPL01

TUDPL01
280

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

approach. It evolved from PySignalSimulator device
server to provide a data-driven approach, easier
replication and a generic framework for testing.

In order to evolve our existing simulation tools, several
needs has been identified to be covered by the simulation
framework:

• Control System Replication: create a simulated copy
of a running system.

• Continuous Integration: validate effect of software
changes during development.

• Functional testing: validate the behaviour of a whole
control system before a part of it is upgraded.

• Integration tests: validate external software upgrades
(OS, libraries, tools) against our own software.

• HMI Validation: Provide a testing platform for GUI's
whenever real hardware availability is scarce.

• Chaos engineering / Canary testing, prepare test
cases and validate them under production conditions.

• Proof of concepts, test new technologies.
• Bug reproducibilty: recreate bug conditions to be

included in issue reports for external teams.

The required functionalities to achieve these objectives
have been split in two different pieces of software: the
SimulatorDS Tango Device Server for executing the
simulation itself and the gen_simulation script for
configuring the testing environment and facilitate the
generation building.

Both developments are focused on not starting new
tools from scratch but on exploiting the already existing
features of existing python libraries in Tango: PyTango
and fandango.

All the features of SimulatorDS are possible due to the
versatility of Tango Python binding, PyTango[9]. It
allows the flexibility of a dynamic typed language and
mutable objects, providing device servers that can be
expanded on-the-run with new attributes and behaviours.

The SimulatorDS Tango Device Server
As an evolution of the PySignalSimulator device

server, the SimulatorDS device is a wrapper around the
DynamicDS class of the fandango python library [10].
This device server reads single-line python code [recipes]
from the Tango Database for each declared attribute,
command, quality or state.

The device extends the python built-ins with
mathematical and statistical methods. Other methods
available[11] include time conversion, external attribute
reading, database access (Fig.1), regular expressions.
Additional libraries and declarations can be loaded using
ExtraModules and LoadFromFile properties (Fig. 2).

Figure 1: DynamicAttributes declaration accessing
archived data via ExtraModules.

Figure 2: Device Properties of a SimulatorDS, as seen in
Jive configurator tool.

The evaluation engine permits to codify complex state
machines through the VAR and PROPERTY methods,
that allows to pass/store/retrieve between dynamic code
evaluations and keep the current state of the device, either
in memory (using VAR(name,value)) or persistently in the
database (WPROPERTY(name,value)).

Figure 3: User defined specification of attributes and
constants for simulation, using XATTR to acquire real
data from devices while simulating the rest.

Via ExtraModules and LoadFromFile properties, the
expert user can load its own constants, formulas, classes
and objects and export them to the evaluation engine.
Objects declared this way can be used to keep the internal
StateMachine model of the simulated device.

States of SimulatorDS devices are declared on a list
(Fig.5) and evaluated sequentially, applying the first state
which formula evaluates to True.

Figure 5: DynamicStates declaration.

As seen in Fig. 6, there are several properties that allow
to configure the internal evaluation process from Jive.
KeepAttributes, KeepTime and CheckDependencies will

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUDPL01

Software Technology Evolution
TUDPL01

281

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

control for how long formulas result are kept instead of
being re-evaluated, as well if its results have to be kept at
all. These properties will manage both cpu usage and
memory usage.

Figure 6: Properties to configure the internal evaluation
engine of SimulatorDS.

Copy and Paste: the gen_simulation Script
One of the main objectives of the SimulatorDS project

was to simplify the replication of existing systems to be
able to debug existing bugs without no need of a real
hardware or infrastructure behind.

The process of replicating a running system has been
divided in multiple steps:

• Extract all attributes accessed from a PyTango
application.

• Export all its values and data configuration to a data
file (csv, json or pickle).

• Generate a SimulatorDS default property
specification for each Tango class that has been
exported.

• Recreate the exported data as new simulators in a
different tango-host, mimicking the original structure
but with entirely simulated data.

• Apply or modify the events/polling configuration
data of all the exported devices to reproduce the
original conditions or experiment with new ones.

These tasks are fulfilled by the gen_simulation script, a
guided helper that allows to perform each step
sequentially generating intermediate files that can be
modified during the process. It allows to modify
selectively the device names or its properties during the
replication process.

A Tool for Bug Reproducibility
Bug unreproducibility is a common issue when sharing

open source projects amongst several institutes. As we
rely on several open source packages to operate our
machine (Tango, Taurus, PyTango, HDB++) sometimes
we find bugs that are not easy to reproduce at all by the
developer teams of these projects in other sites.

A simulation platform that imports/exports files that
can be shared and launched anywhere helps to provide
reproducibility of bugs encountered in the system so

developers outside of the institution can work on them
without access to the real system.

Simulating the Control Infrastructure
In addition to simulators, many other devices play a

role on simulating the whole control system.

Some of these devices involved are:
• Tango Starter devices (daemon-like processes

managing running Tango servers on each host) allow
to easily restart device servers with adding new
devices to them or modifying its interfaces.

• ProcessProfiler Device Server, it obtains CPU and
memory statistics for all processes running in the
machine and converts it into Tango attributes, that
can be used for archiving or alarms.

• HDB++ Archiving Database [hdbpp], to log and
register the whole simulation process, allowing to
generate statistics afterwards.

• WorkerDS: A device capable of running maintenance
scripts (cron-like), either to clean up the archiving
database or execute system maintenance tasks.

• PyAlarm Device Server, the PANIC Alarm System
device [12], that may trigger alerts in case of
abnormal behaviour of the simulation.

The HDB++ database [13] is a perfect tool for storing
data results, as it subscribes to the events pushed by the
simulators in a non-intrusive way.

The CSV / JSON files used by gen_simulation script
can also be used to store / recreate all these infrastructural
devices, or to configure new ones depending on the needs
of our tests. The CSV format provides a human-readable
way to declare new test cases and setup the
host/server/device distribution. These approach has been
used to configure the PANIC Alarm System test suite.

OTHER SIMULATION TOOLS IN TANGO
Although SimulatorDS allows final-users to place their

simulation code in Python files that will be imported by
the device, this kind of implementation doesn’t provide
any additional feature respect of using the high-level API
of PyTango, that allows to define Tango device servers
with few lines of code.

The power and versatility of SimulatorDS resides
instead on exploiting the Tango Database as repository of
rules for the simulation. Using the database allows to
freely move devices between machines or update the
behaviour with no need of restarting the processes. That’s
the most prominent feature of SimulatorDS in comparison
with the python high-level API or tango-simlib library.
Any code loaded at startup can be modified at runtime to
provide different behaviour if needed.

The tango-simlib library [14] has been also recently
developed for the large telescope array SKA [15]. Using a
combination of model-based and data-driven simulation
techniques it provides similar features to SimulatorDS. As
both tools may be complementary we are actually
including it in our Tango 9 tools benchmark setup.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUDPL01

TUDPL01
282

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

TESTING IN PRODUCTION

Continuous Delivery at ALBA
A technique for validating software in production is

Canary Testing, implemented at ALBA Accelerators
System for all control packages since 2014. New versions
of control software are not deployed for the whole
accelerator system but to a well delimited part of it. It
allows for early detections of problems while limiting the
impact to users.

Chaos Engineering
Chaos engineering [16] is the discipline on running

controlled experiments on production systems in observer
its behaviour. It increases the knowledge about the limits
and weaknesses of a system and increases our level of
confidence.

It is based on five principles[17]:
• Build hypothesis around steady state behaviours.
• Vary real-world events.
• Run experiments in production.
• Automate experiments to run continuously.
• Minimize blast radious.

Chaos engineering is starting to be applied at ALBA for
doing specific experiments on the performance of the
Control System. ALBA is actually migrating its control
system from a polling-based approach in Tango 7 to an
event-based approach using Tango 9 and ZMQ; in which
events can be triggered either on internal polling or
asynchronous pushing.

All these variants affect in different way the behaviour
of devices, increasing their cpu or memory usage due to
the internal threading and cacheing. It also may affect the
behaviour of commands, as an slow implementation of a
command may trigger unexpected timeouts on clients.

In the case of a layered system, problems are often not
caused by any concrete element of the system but by the
aggregation of them (accumulated delays, memory leaks,
unexpected logics, lost messages that lead to wrong
states). Thus makes important to have some ways to
"degrade" system conditions in the simulation to study the
reliability and fault-tolerance of the system.

Machine runs are actually being used to experiment
with the different event configurations available in Tango,
trying to get the optimal configuration for each device
class.

Testing Tango on Amazon Web Services
In order to perform full integration tests of new releases

of tools in Tango, a platform for testing and Chaos
Engineering is being developed using Amazon Web
Services (AWS) and its Elastic Computing Cloud (EC2).

The objective of the testing is having a full control
system infrastructure to validate the effect of a change or
upgrade on any part of the system, doing both integration
tests for new features or regression tests to discard loses
of performance.

A platform for integration testing must allow to run as
much layers of the real control system as possible, thus all
devices involved in testing (HDB++, WorkerDS,
ProcessProfiler, Starter) must be available.

As shown in Fig. 7, a central node is deployed as
database for the test, and then successive EC2 instances
are launched via aws-cli tool. Each of the nodes reuses an
already created image with all tango services.

Figure 7: Nodes created in EC2 for each test.

Using the CSV specification of hosts, devices and
servers; the fandango library and its Astor API is used to
create and configure each device and start them on each
node using the desired distribution for the test. Events,
polling and archiving configuration is done in the same
CSV files for each test case.

CONCLUSIONS
Classical testing, like unit or functional test, have

limited usage if they validate the software in conditions
that do not match those occurring in production. Checking
code correctness is a must, but not enough as many other
factors may affect the behaviour of software when it is
deployed in real production (problems of scale, delays
and timeouts, memory leaks appear, conflicts between
tools, unwanted regressions, ...).

To detect those problems before the software gets
deployed in the whole system we can apply two other
techniques: Canary testing and Chaos engineering. But,
with the current tight schedules, there’s very limited time
to do these experiments. We must arrive to the production
stage with our software ready to be validated and with
the tools in place to detect any abnormal behaviour.

Thus, a simulated environment is needed to perform
integration tests on new tools before deployment and
know exactly what to expect. The SimulatorDS suite has
been developed and is now already in use for Continuous
Integration and Delivery of the PANIC Alarm System at
ALBA, as well as a common tool for bug replication and
HMI testing.

In addition, the ongoing work on deploying replicated
control systems on AWS would help to use it as a generic
tool for Integration Tests for any Tango related project;
the next step would integrate tango-simlib in the
developed platform to provide a full-featured solution.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUDPL01

Software Technology Evolution
TUDPL01

283

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

ACKNOWLEDGEMENTS
We want to thank Andrew Götz and the European

Synchrotron Radiation Facility to open the possibility to
collaborate in the Chaos Engineering project for Tango.

REFERENCES
[1] T.Shen et al., "The Evolution Of The Simulation

Environment In ALMA", in Proc. ICALEPCS 2015,
Melbourne, Australia, Oct. 2015, paper WEPGF031

[2] J.K Munro et al., “A proposed alarm handling system
management plan for SNS with application to target control
system”, in Proc. ICALEPCS 2007, Trieste, Italy, paper
RPPB27

[3] S. Rubio-Manrique et al., “Dynamic Attributes and Other
Functional Flexibilities of PyTango”, in Proc.
ICALEPCS'09, Kobe, Japan, Oct. 2009, paper THP079.

[4] S.Rubio-Manrique, G.Strangolino, M.Ounsy, S.Pierre-
Josepth, “Validation of a MySQL Archiving for ALBA”, in
Proc. ICALEPCS'09, Kobe, Japan, Oct. 2009, paper
WEP010.

[5] S.Rubio-Manrique et al., “PANIC and the Evolution of
Tango Alarm Handlers”, presented at ICALEPCS’17,
Barcelona, Spain, Oct.2017, paper TUBPL03.

[6] TANGO website, http://www.tango-controls.org

[7] N.Bin Ali, K.Petersen, C.Wohlin, “A Systematic Literature
Review On The Industrial Use Of Software Process
Simulation”, Journal of Systems and Software, Vol. 97, Nov.
2014, pages 65-85

[8] SimulatorDS sources,
https://github.com/tango-controls/simulatords

[9] Tango Python binding, https://pytango.readthedocs.io

[10] Fandango library and tools for Tango,
 https://github.com/tango-controls/fandango

[11] Formula recipes for SimulatorDS,
https://github.com/tango-
controls/SimulatorDS/blob/develop/doc/recipes.rst

[12] PANIC Website, http://www.pythonhosted.org/panic

[13] L.Pivetta et al., “New developments for the HDB++ Tango
Archiving System”, presented at ICALEPCS’17,
Barcelona, Spain, Oct.2017, paper TUPHA166.

[14] Tango Simlib, http://tango-simlib.readthedocs.io

[15] A.Banerjee, S.R.Chaudhuri, P.Patwari, L.Van Den Heever,
"Data Driven Simulation Framework", in Proc.
ICALEPCS’15, Melbourne, Australia, Oct. 2015, paper
WEPGF025.

[16] A.Basiri, N.Behnam, R.de Rooij, L.Hochstein, L.Kosewski,
J.Reynolds, C.Rosenthal, "Chaos Engineering", IEEE
Software, vol.33, no. 3, pp. 3541, MayJune 2016

[17] "Principles of Chaos Engineering",
 http://principlesofchaos.org/

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUDPL01

TUDPL01
284

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

