
OPTIMIZED CALCULATION OF TIMING FOR PARALLEL BEAM
OPERATION AT THE FAIR ACCELERATOR COMPLEX

A. Schaller, J. Fitzek, GSI, Darmstadt, Germany
F. Wolf, D. Lorenz, TU Darmstadt, Germany

Abstract
For the new FAIR accelerator complex at GSI the settings

management system LSA is used. It is developed in collabo-
ration with CERN and until now it is executed strictly serial.
Nowadays the performance gain of single core processors
have nearly stagnated and multicore processors dominate the
market. This evolution forces software projects to make use
of the parallel hardware to increase their performance. In
this thesis LSA is analyzed and parallelized using different
parallelization patterns like task and loop parallelization.
The most common case of user interaction is to change spe-
cific settings so that the accelerator performs at its best. For
each changed setting, LSA needs to calculate all child set-
tings of the parameter hierarchy. To maximize the speedup
of the calculations, they are also optimized sequentially. The
used data structures and algorithms are reviewed to ensure
minimal resource usage and maximal compatibility with
parallel execution. The overall goal of this thesis is to speed
up the calculations so that the results can be shown in an
user interface with nearly no noticeable latency.

MOTIVATION
To allow the commissioning and operation of the Facil-

ity for Antiproton and Ion Research (FAIR), the software
used today has to be optimized. The CRYRING (YR), with
its local injector, acts as a test facility for the new control
system and in particular for the control systems’ central com-
ponent, the settings management system LHC Software Ar-
chitecture (LSA) [1]. For the last YR commissioning beam
time, about 3 700 manual trims (modifications of settings in
LSA, that leads to a recalculation of all dependent parameter
settings) were calculated per week with 80 working hours,
which is about one trim every 77 seconds. Since the YR is
a rather small accelerator ring, with a circumference of ap-
proximately 54m [2], everything worked fine. The waiting
time for these 3 700 trims summarizes to about 19 minutes
distributed over the 80 working hours. The human reaction
time is not much less, so the settings management system
is pleasant to operate. But when it comes to calculate the
Heavy Ion Synchrotron 18 (SIS18) or SIS100, the calcula-
tions get very slow. To calculate 3 700 trims for the SIS18,
with its approximate 216m [3], an operator would have to
wait for over 13 hours distributed over the 80 working hours.
The SIS100, with approximately 1100m [4], calculation
would even take over 91 hours which even doesn’t fit into the
80 working hours. In 2025 not only single ring accelerators
will be calculated separately, but the entire accelerator com-
plex since the individual rings influence each other. Beams
will start in the Universal Linear Accelerator (Unilac) and

go their ways through the different rings and transfer lines to
reach a target at the end, see also Figure 1. With the current
calculation times it won’t be possible to support an efficient
beam operation for FAIR.

Figure 1: The layout of FAIR. The existing GSI Helmholtz
Center for Heavy Ion Research (GSI) facility (blue) acts as
injector for the new FAIR facility (red).

SPEEDUP
The speedup S represents a factor, that shows how two

different algorithms perform on the same task. In the context
of parallelization, the “speedup is a multiplier indicating how
many times faster the parallel program is than its sequential
counterpart. It is given by

S(P) =
T(1)
T(P)

(1)

where T(n) is the total execution time on a system with n
processing units” [5]. T(1) is also representable as

T(1) = Tsetup + Tcompute + Tfinalize (2)

Since the only part that can benefit from parallel optimiza-
tion is Tcompute, T(n) can be written as

T(n) = Tsetup +
Tcompute(1)

n
+ Tfinalize (3)

The efficiency can be expressed as

E(P) =
S(P)

P
(4)

and gives an idea of how good a parallel code works. If
the efficiency is close to 1, the parallelization is very good.
The theoretically possible value for E = 1 is called a perfect
linear speedup [5].

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA019

Control Systems Upgrades
TUPHA019

411

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Work Depth Model
The Work Depth Model, described by Blelloch [6], al-

lows to compare the execution time of parallel algorithms.
Especially when using graphs for parallelization, like the pa-
rameter hierarchy in LSA, other comparison mechanism do
not fit to the problem. For example, Amdahl’s Law assumes
that the code is equally parallelized, but as the parameter
hierarchy in LSA is an unbalanced Directed Acyclic Graph
(DAG) this assumption is never fulfilled.

In the context of parallelizing LSA, the work W is ex-
pressed by the amount of settings and the depth D is ex-
pressed by the depth of the parameter hierarchy. Using
Eq. (5) of Blelloch, a range for time T can be calculated for
a given number of processing units P where time T depends
on the hardware:

W
P
≤ T <

W
P
+ D , (5)

with respect to Eq. (1) one can say that the speedup in the
Work Depth Model is

WP
W + PD

≤ S(P) < P . (6)

TEST SCENARIOS
Since this thesis aims at optimizing the calculations per-

formed in LSA, any other influence on the measurements
must be ruled out. Therefore the patterns with all their Beam
Production Chains (chains), beam processes and settings as
well as the parameter hierarchies with all parameters are
read out of the database before the calculations and time
measurements were started. Also the database persistence
was removed. This procedure is also called a “trim simula-
tion” where only the LSA calculations are performed, but
no data gets persisted in the database and no data is sent to
the real accelerator devices.
The Figures 2 and 3 visualize the two patterns, creating

four scenarios used for testing and Table 1 provides some
more details about them.

Table 1: Overview of the Test Scenarios

No. of No. of
changed calculated average

Nr. of high level dependent original
Scenario settings settings settings time

P1-1 14 538 1 8 707 12.7 s
P2-1 38 943 1 11 184 132.9 s
P2-2 38 943 1 8 466 18.1 s
P2-3 38 943 2 19 650 155.2 s

Each scenario was run twice for warmup, to let the Just
in Time (JIT) compiler of the Java Virtual Machine (JVM)
optimize the code. On the first run, also the caches of LSA
were filled, after the third run, the execution time for each
trim was within an acceptable range caused by the normal
fluctuations in execution time.

• Including one Chain
• Changed one high-level parameter in

– SIS18 (P1-1)
Figure 2: Pattern 1.

• Including three Chains
• Changed one high-level parameter in

– SIS100 (P2-1)
– SIS18 (P2-2)
– SIS18 and SIS100 (P2-3)

Figure 3: Pattern 2.

OPTIMIZATIONS
The following optimizations were performed

Sequential
• use caching where possible
• use suitable data structures for the main use case
• reduce array copies when inserting (or deleting) multi-
ple points to a function

• change algorithms with complexity O(n2) to those with
O(n log n) where possible

• do not calculate a setting for all its parents but only
once all its parents have been calculated

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA019

TUPHA019
412

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control Systems Upgrades



Parallel
• block on cache request if another thread actually calcu-
lates the result

• run static data preparation in parallel
• run calculation loops in parallel where possible
• use parameter hierarchy as a task graph

OPTIMIZATION RESULTS

no serial serial + parallel
0.25

1

4

16

64

256

optimization

se
co
nd
s

P1-1
P2-1
P2-2
P2-3

Figure 4: Average execution times on the target platform.

For Figure 4 each scenario was run twice for warmup
and five times for measurements on the target platform (10
cores and Hyper Threading Technology (HT), 64GB RAM).
The parallel execution was measured with the default thread
pool size of 19 plus the main thread. One can assume, that
the patterns used for operating in the full FAIR accelerator
complex will also experience an identical speedup.
Figures 5 and 7 show the memory consumption on the

target platform for scenario P2-3. The scenario was run
twice for warmup and five times for measurements.
The speedup for the test platform with 4 cores and HT

is between 3.92 and 4.00 while the speedup range for the
target platform are 9.49 to 10.00. The measured speedups

Figure 5: Memory usage on target platform without op-
timizations: 738.6 s, 305 garbage collections, 1 353.4GB
total memory allocation.

3.95

9.97

2 4 8 16 32 64 128 256 512

2

8

32

128

512

10
Number of processing units

Sp
ee
du
p

Work Depth:
range of Speedup
Speedups:
10 cores with HT
4 cores with HT

Figure 6: Work Depth Model: Equation (6) for W = 3728
(changed setting settings in SIS100) and D = 20 (depth of
parameter hierarchy for SIS100).

3.95 on the test platform respectively 9.97 on the target
platform are at the upper bound of the theoretical ranges.
Since the trim calculates values for several thousand settings,
one can assume that the theoretical forecast will also be seen
in practice, if a platform with more cores is used.

The parallel speedup on the target platform with 10 cores
and HT has an efficiency E of 0.997, on the test platform
with 4 cores and HT the efficiency is 0.987 (see Eq. (4)),
which nearly is a so called perfect linear speedup where
E = 1.
Figure 5 shows the unoptimized memory allocations.

There were more that 5 GB memory allocated and imme-
diately afterwards released and collected by the Garbage
Collector (GC). For the five measured trims, the GC was exe-
cuted 305 times deleting over 1.3 TBmemory data. Whereas
in Fig. 7 the memory usage was optimized and for each trim

Figure 7: Memory usage on target platform with optimiza-
tions: 8.7 s, 5 garbage collections, 18.9GB total memory
allocation.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA019

Control Systems Upgrades
TUPHA019

413

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



there was only one GC execution, deleting in sum 19 GB of
data.
For Fig. 8, each scenario was executed two times for

warmup and five times for measurements on a test platform
(4 cores, 12GB RAM) with and without HT. The default
thread pool size is n − 1, so for the setup without HT, the
default thread pool size is 3 and with HT the default thread
pool size is 7. One can clearly see, that the execution time
reaches its limit with about eight threads, which is the double
of the hardware threads. Afterwards the execution time
stagnates or even gets worse. Also its indisputable that HT
has a noticeable speedup for the calculations in LSA.

3 4 7 8 12 16 20
15

20

25

30

threadpool size

se
co
nd
s

without HT
with HT

Figure 8: Execution times for different thread pool sizes.

Table 2 provides a detailed overview of the Central Pro-
cessing Unit (CPU), GC, thread pool usage, Thread Local
Allocation Buffer (TLAB) and allocation rates. The scenario
P2-3 was therefore trimed two times for warmup and one
time for measurement on the target platform. The parallel
execution was done with the default JVM settings, so 19
threads in the thread pool plus the main thread. However,
the number of available Java-threads can be much higher,
depending on the tasks, so that the scheduler is able to use
load-balancing. The TLAB is a storage each thread has for
itself, read and write accesses to this storage do not need any
synchronization. The TLAB size is automatically adjusted
by the JVM; however there’s the potential of optimization,
if one knows how big the TLAB will be one could set this
size as an argument to the JVM. The Object storage on the
other hand is accessible by all threads and needs to be syn-
chronized when multiple threads make a use of it. In the
table one can clearly see, that the trim time reduces from
95.6s to 0.7s in the fully optimized version. Besides the
memory usage, manifested in the TLAB size, which was
also described in figures 5 and 7 the CPU consumption is
another number to note. In the original version, only one
of the ten cores, building two threads due to HT, was used
where on the parallel version all cores were used and reached
a workload of nearly 63%. The thread pool now takes over
90% of the total calculations.

SUMMARY
By reducing the memory consumption and complex-

ity of the most used algorithms of LSA from O(n2) to
O(n log n) the sequential calculation time could be sped up

Table 2: Overview of the Needed Resources for P2-3 on the
Target Platform

Optimization None Sequential Sequential
& Parallel

trim time 95.6 s 5.4 s 0.7 s

CPU usage avg 6.2% 9.1% 62.8%
CPU usage max 19.9% 11.1% 62.8%

Heap avg 2.5GB 1.8GB 2.0GB
Heap max 5.4GB 3.4GB 3.8GB

GC pause time

avg 11.4ms 29.7ms 33.8ms
max 70.5ms 29.7ms 33.8ms

Main thread usage 100% 100% 8.5%
Thread pool usage

total 0% 0% 91.5%
avg 0% 0% 4.8%

TLAB size

total 147.5GB 6.4GB 4.0GB
avg 64.1MB 56.8MB 3.6MB
max 105.7MB 75.0MB 72.8MB

Allocation rate 1 495.0MB/s 731.3MB/s 672.0MB/sfor TLAB

Object size

total 114.3 kB 10.4 kB 5.0 kB
avg 1.0 kB 10.4 kB 0.8 kB
max 32.0 kB 10.4 kB 2.1 kB

Allocation rate 1.1 kB/s 1.2 kB/s 0.8 kB/sfor Objects

by 22.00. Parallelizing the DAG containing the parameter
hierarchy and some loops in the trim calculations increased
the speedup by a factor of 9.97 on the target platform with 10
cores with hyper threading. This leads to an average speedup
of 219.23 which now allows the user to seamlessly change
the overall accelerator scheduling.
In this paper, LSA was optimized at GSI. The next steps

will be the merge with the common code base at European
Organization for Nuclear Research (CERN). More about the
collaboration of GSI and CERN can be found in [7].

REFERENCES
[1] G. Kruk et al., “LHC Software Architecture (LSA) - Evolution

Toward LHC Beam Commissioning”, in Proc. ICALEPCS’07,
Knoxville, TN, USA, paper WOPA03.

[2] GSI, “Cryring@ESR”, https://www.gsi.de/en/work/
research/appamml/atomic_physics/experimental_
facilities/cryringesr.htm accessed on 2017-09-26

[3] GSI, “SIS18 Sections”, https://www.gsi.de/en/work/
accelerator/heavy_ion_synchrotron_sis18/sis18_
sections.htm accessed on 2017-09-26

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA019

TUPHA019
414

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control Systems Upgrades



[4] FAIR, “Heavy Ion Synchrotron SIS100”, http:
//www.fair-center.eu/news-events/news-view/
article/heay-ion-synchrotron-sis100.html
accessed on 2017-09-26

[5] G. T. Mattson, A. B. Sanders, and B. L. Massingill, Patterns
for Parallel Programming, Addison-Wesley 2010, 6th Printing,
ISBN 0321228111

[6] G. E. Blelloch, “Programming parallel algorithms”, Com-
munications of the ACM, 1996, http://portal.acm.org/
citation.cfm?doid=227234.227246,

[7] J. Fitzek et al., “First Production Use of the New Settings
Management System for FAIR”, presented at ICALEPCS’17,
Barcelona, Spain, Oct 2017, paper THPHA062.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA019

Control Systems Upgrades
TUPHA019

415

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


