
MATLAB CONTROL APPLICATIONS EMBEDDED INTO EPICS PROCESS
CONTROLLERS (IOC) AND THEIR IMPACT ON FACILITY OPERATIONS

AT PAUL SCHERRER INSTITUTE

P. Chevtsov†, T. Pal, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
M. Dach, Dach Consulting GmbH, 5200 Brugg, Switzerland

Abstract
An automated tool for converting MATLAB based con-

trols algorithms into C codes executable directly on EP-
ICS process control computers (IOCs), was developed at
the Paul Scherrer Institute (PSI). Based on this tool, sev-
eral high level control applications were embedded into
the IOCs, which are directly connected to the control
system sensors and actuators. Such embedded applica-
tions have significantly reduced the network traffic and,
as a result, the controls data handling latency. The paper
concentrates on the most important components of the
automated tool and some performance results of
MATLAB algorithms converted by this tool.

INTRODUCTION
EPICS [1] Channel Access (CA) servers, which are al-

so associated with Input-Output Controllers or IOCs, are
well suited for interacting with sensors and actuators
engaged in the control system. However, basic EPICS
doesn’t provide powerful standard options for dealing
with sophisticated algorithms, which can be used on the
IOC directly to process data obtained from sensors and to
control actuators. Some simple available means include
the calculation (calc) record with embedded elementary
mathematical operations and the pid record for typical
proportional-integral-derivative control functions. If more
advanced mathematical calculations are required, then the
dedicated procedures must be written. It can be either a C
code to be implemented as a process function of a subrou-
tine (sub) record or a state notation language (SNL) pro-
gram.

The CA servers are developed and supported by control
system specialists. This ensures that these servers are
robust and their data are always available for users. At the
same time, any efficient data analysis and data processing
algorithms can only be developed by scientists who are
experts in the fields of science associated with these data.
This clear border of responsibilities between control sys-
tem developers and users allows one to increase the re-
search efficiency of any scientific organization.

Very powerful data processing and modeling features
are provided by MATLAB [2], which is used in research
organizations worldwide. In particular, PSI scientists and
engineers have a long successful experience with
MATLAB applications dealing with control system data.
MATLAB is deployed at PSI as an integrated part of the
well-established EPICS based data management environ-
ment [3]. The access to control system data, which are

associated with EPICS records and referenced as chan-
nels, is provided by two in-house developed interface
packages: Java based ca_matlab [4] and C/C++ based
MOCHA/CAFE [5]. The latter, for instance, makes all
basic CA functionalities available for MATLAB pro-
grams in terms of simple and transparent commands. For
instance, to get the value from a channel with a specified
name, one can use the following command:

 value = caget(‘channel name’).
Similarly, to set the control parameter represented by

some channel name equal to the required value the next
command can be used:

 caput(‘channel name’, value).
MATLAB codes are interpreted and executed line by

line, which makes it an ideal tool for application prototyp-
ing and testing. The performance of the MATLAB pro-
grams versus their C program equivalents is, however,
questionable. With all its great features, MATLAB is a
good solution for “off-line” data analysis applications
where a deterministic time response is not mandatory.
However, to be useful for real “on-line” data processing
applications, MATLAB, with its simplicity of the code
development and maintenance, has to be combined with
the C code performance and real-time data management
mechanisms. The paper describes a way how to imple-
ment such a combination in the context of the EPICS CA
server closed loop control.

MATLAB PROGRAM INTRACTION
WITH EPICS BASED CONTROL SYSTEM

MATLAB programs at PSI are mostly used in closed
loop control applications as illustrated in the Fig. 1.

Figure 1: Closed loop controls with the use of an EPICS
CA server and a MATLAB program.

 __

† pavel.chevtsov@psi.ch

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA020

TUPHA020
416

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control Systems Upgrades

Data flows and processing are done as following. The
EPICS CA server feeds the input (in) channels with data
from sensors. The MATLAB program, which runs on a
PC console, obtains data from these channels via the
computer network and performs all necessary data pro-
cessing calculations. After calculations, the result data are
sent via the network to the appropriate EPICS output
(out) channels and further to the corresponding actuators.

This scenario looks fine from the functional point of
view. However, the performance of this system depends
on several factors. The Ethernet based computer network,
which connects clients and servers, is a definitely weak
point. By its nature, the network introduces time latencies
and jitters while sending data either way, which makes it
not time deterministic and, as a result, not optimal for
closed loop control applications. Besides, PC consoles
housing MATLAB applications and running under Linux
or Windows OS also contribute to the overall not time
deterministic system behaviour.

A proposal that minimizes unwanted delays for data
flows in the above mentioned scenario is shown in Fig. 2.
The MATLAB based program is moved from the console
PC directly to the IOC. This allows one to simplify inter-
connections between system components and significant-
ly increase the system performance.

Figure 2: MATLAB algorithms embedded into the IOC.

The basic MATLAB package comes with the MATLAB
Coder, which produces a C code from a MATLAB pro-
gram. According to MathWorks specifications, the result-
ant C code is functionally equivalent to the original
MATLAB program. The original MATLAB programs can
be launched on selected computer platforms under Win-
dows, Linux or Mac OS. The embedded systems, which
use ARM, Power PC or MIPS processors, cannot run
MATLAB codes directly but the C code generated by the
MATLAB Coder can be compiled or cross-compiled for
all those architectures.

Imagine that the C code is generated from a MATLAB
program. How to embed it into the IOC?

One possible way is to make it a part of an EPICS se-
quencer (SNL) program.

Another way is to use a standard Array Subroutine
(aSub) EPICS record. In this case, the input (inp) links of
the aSub record are associated with EPICS channels,
which are used in the original MATLAB program in the
context of caget calls. The output (out) links of this record
replace caput calls. The C code generated by the
MATLAB Coder is encapsulated by the process function
of the record.

To realize these two ideas, an automated tool for con-
verting MATLAB based controls algorithms into C codes
was created. The tool is called the MATLAB to C Con-
trols Conversion Tool (MCCCT). Its core consists of three
Linux shell scripts.

One script (coderPreprocessor.sh) does the MATLAB
program pre-processing. It acts on the original MATLAB
program and prepares it for the C code generation. The
main goal is to replace all caget and caput calls with the
entries required by the aSub record or SNL program (see
Fig. 3 in the Appendix). In addition, this script determines
the type and number of elements for EPICS channels used
by the original MATLAB program.

Two other scripts do the post-processing of the C code
generated by the MATLAB Coder.

The first post-processing script (coderPostproces-
sor.sh), converts the generated code into a suitable aSub
record process function. The script also

- generates the EPICS database associated with the
aSub record, which has input and output links
filled with all channels involved,

- generates a standard IOC startup script to load
the aSub record related database, which was
generated in the previous step,

- creates a makefile to compile/cross-compile the
C code, and

- produces all header files and C files, which are
required for the final compilation/cross-
compilation.

The second post-processing script (coderPostproces-
sor_snl.sh) inserts the C generated code into a standard
SNL skeleton provided by the MCCCT (see Fig. 4 in the
Appendix). The script also

- creates a makefile to compile the produced SNL
program,

- generates a standard IOC startup script that loads
a shared library associated with the resultant

- SNL program, and
- produces a standard IOC SNL startup script that

launches the SNL program.
The MCCCT solution looks very attractive for

MATLAB/EPICS developments. The original MATLAB
code, which is easy to test and maintain, can be used for
prototyping, while the generated C code can be used as a
production version to be embedded in the dedicated EP-
ICS CA server.

We note that the SNL part of the MCCCT solution is
especially efficient for MATLAB programs doing data
processing and control actions in infinite loops.

Some more MCCCT details can be found in the Ap-
pendix.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA020

Control Systems Upgrades
TUPHA020

417

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

CONCLUSION
The automated tool for converting MATLAB based

controls algorithms into C codes has been in use at PSI
for about two years. Based on this tool a number of
MATLAB applications dealing with the supervisory of
SwissFEL subsystems, such as diagnostics and lasers,
were converted and embedded into the IOCs handling
sensors and actuators directly. The resultant impact on the
machine operations is clearly noticeable, which contrib-
utes to overall machine stability.

 All control network traffic associated with the commu-
nication of such applications with IOCs is eliminated.
This is especially important in conditions of SwissFEL
operations when the network is heavily loaded not only
by a wide variety of control tools used on-line but also by
the beam synchronous data acquisition system [6] running
at 100 Hz.

After conversion, original MATLAB applications do
not have to run on PC consoles anymore. This solves
Linux system administrator problems related to the execu-
tion of these applications on PC consoles and frees the PC
resources for other tasks. Besides, as parts of the IOC
software, the converted applications get the around the
clock support from the control system team, which en-
sures their reliable run during SwissFEL operations.

Talking directly to controls hardware, embedded
MATLAB applications are much faster than their original
versions. An average execution time of control loops was
reduced up to 5-10 times. For instance, in case of electro-
optical modulator bias scans for SwissFEL bunch arrival
time monitors [7] this time was reduced from 75 to 15
seconds.

 Further developments of the technique presented in
this paper will be concentrated around MATLAB Sim-
ulink applications and embedding initial MATLAB algo-
rithms into FPGA modules.

APPENDIX
The Appendix explains in details all the steps, which

must be followed to embed a MATLAB code into the IOC
with the use of MCCCT.

First of all, a MATLAB program, which interacts with
an EPICS CA server, has to be written and tested. After
that, one can switch to the conversion procedures. We
note that all these procedures were successfully tested at
PSI on 64 bit PC consoles running Scientific Linux 6.4.

Assuming that there is a test MATLAB program
myTest8.m residing in a /home/ioc/MATLAB-TEST
directory, one switches to this directory

> cd /home/ioc/MATLAB-TEST

and starts to execute the MATLAB to EPICS conversion
pre-processing script by typing

> coderPreprocessing.sh myTest8.m

During the execution, the script reports its actions and
results.

From the reported results, it is seen that the script pars-

es the myTest8.m MATLAB program and produces an
intermediate myTest8_C.m program, which is suitable for
the MATLAB Coder use. The difference between these
two programs is shown in Fig. 3.

Figure 3: The original myTest8.m program and its pre-
processing result.

Meanwhile, the script continues and starts the

MATLAB Coder.

After some work, the C code is produced.

At this moment, it has to be decided if the generated C
code is going to be used with the aSub record or to be-
come a part of the SNL program.

When the first option is chosen (“1” is typed followed
by the ENTER key) then the corresponding post-
processing script coderPostprocess.sh generates the
EPICS database and files supporting the aSub record.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA020

TUPHA020
418

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control Systems Upgrades

In case if one decides to use the second option (“2” is

typed followed by the ENTER key), the coderPostpro-
cess_snl.sh script inserts the generated C code into a
standard MCCCT SNL skeleton, which is shown in
Fig. 4, and creates files supporting the SNL program.

After that, in both cases, if “c” is typed and followed by

the ENTER key, then the compilation/cross-compilation
starts. At the end of this process, all necessary shared
libraries are created, the corresponding EPICS database
support structure (template, substitution and startup.script
files) is generated and gets ready for downloading into the
IOCs.

Figure 4: MCCCT SNL program skeleton.

REFERENCES
[1] EPICS, http://www.aps.anl.gov/epics/.

[2] B. Hahn and D.T. Valentine, “Essential MATLAB for
Engineers and Scientists”, Academic Press, USA, 2013, p.
424.

[3] E. Zimoch et al., “SwissFEL Control System. Overview,
Status and Lessons Learned”, presented at ICALEPCS'17,
Barcelona, Spain, Oct. 2017, paper MOAPL04, this con-
ference.

[4] ca_matlab,
https://github.com/channelaccess/ca_matlab

[5] J. Chrin, “An update on CAFE, a C++ channel access
client library, and its scripting language extensions”, in
Proc. ICALEPCS'15, Melbourne, Australia, Oct. 2015, pp.
1013-1016.

[6] S. Ebner et al., “SwissFEL - beam synchronous data acqui-
sition – the first year”, presented at ICALEPCS'17, Barce-
lona, Spain, Oct. 2017, paper TUCPA06, this conference.

[7] P. Chevtsov et al., “Bunch arrival time monitor control
setup for SwissFEL applications”, presented at
ICALEPCS'17, Barcelona, Spain, Oct. 2017, paper TU-
PHA020, this conference.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA020

Control Systems Upgrades
TUPHA020

419

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

