
MODBUS APPLICATION AT JEFFERSON LAB

J. Yan, C. Seaton, S. Philip

Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, U.S.A.

Abstract
Modbus-TCP is the Modbus Remote Terminal Unit

(RTU) protocol with the TCP interface running on

Ethernet. In our applications, an XPort device utilizing

Modbus-TCP is used to control remote devices and

communicates with the accelerator control system

(EPICS). Modbus software provides a layer between the

standard EPICS asyn support and EPICS asyn for TCP/IP

or serial port driver. The EPICS application for each

specific Modbus device is developed and it can be

deployed on a soft IOC. The configuration of XPort and

Modbus-TCP is easy to setup and suitable for applications

that do not require high-speed communications.

Additionally, the use of Ethernet makes it quicker to

develop instrumentation for remote deployment. An

eight-channel 24-bit Data Acquisition (DAQ) system is

used to test the hardware and software capabilities.

MODBUS TCP/IP

Modbus is a serial communication protocol widely used

by many manufacturers throughout industry since it was

published by Modicon in 1979 for use with its

programmable logic controllers (PLCs). It has become a

standard communication protocol and is now a common

available means of connecting electronic devices. Many

applications in the field of accelerator control have

implemented Modbus to communicate and control

devices [1,2,3]. Modbus TCP is a Modbus variant used

for communications over TCP/IP network. The Modbus

TCP messaging service provides a Client/Server

communication between devices connected on an

Ethernet TCP/IP network[4]. Figure 1 shows a general

Modbus TCP/IP communication architecture which

includes different types of device, such as, Modbus

TCP/IP Client and Server devices directly connected to

the TCP/IP network, the interconnection devices like a

bridge, router or gateway for interconnection between the

TCP/IP network and a serial line sub-network, which

permit connections of Modbus serial line client and server

end devices. The messaging service of Modbus TCP/IP

has four basic types of messages: Request, Confirmation,

Indication, and Response. When a client initiates a

Modbus Request message for a transaction, the server

side will have a Modbus Indication and send back a

Response message. Finally, the Client has the

Confirmation message for the received Response

message. By using these messages, the Modbus

messaging services perform a real time information

exchange between devices on the network.

Figure 1: Modbus TCP/P Communication Architecture.

The Modbus protocol defines a basic Protocol Data

Unit (PDU) independent of the underlying

communication layers. The mapping of the Modbus

protocol on a specific network will introduce some

additional fields on the Application Data Unit (ADU).

Figure 2 shows the Modbus TCP/IP ADU with a

dedicated Modbus Application Protocol (MBAP) header

which contains the fields of Transaction Identifier,

Protocol Identifier, Length, and Unit Identifier. Modbus

Function Code defines the various reading, writing and

other operation of the Modbus data.

Figure 2: Modbus TCP/IP Request/Response Message.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA024

TUPHA024
424

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control Systems Upgrades

MODBUS TCP/IP APPLICATIONS

Modbus is a client/server communication model. In our

applications, the embedded Ethernet device XPort is

designed as the server and a SoftIOC running EPICS

Modbus is the client. The SoftIOC builds a Modbus

request from parameter contained in a demand that is sent

by the EPICS application to the Modbus Client interface.

On reception of the Modbus request, the Modbus server

activates a local action to read, write, or achieve some

other action. Thus, the main Modbus server functions are

to wait for a Modbus request on 502 TCP port, treat this

request, and then build a Modbus response.

Modbus Server

Xport is an embedded Ethernet device server that

includes all essential networking features including a

10Base-T/100Base-Tx Ethernet connection, reliable

operating system, embedded web server, and a full

TCP/IP protocol stack. It also provides a serial interface

having data transfer rate of 300 bps to 921,600 bps. By

incorporating XPort, we can easily design products that

can be accessed and controlled over the internet. The

software tool ‘DeviceInstaller’ was used to set the IP

address and configure the serial port. Based on the XPort,

we designed a prototyped Modbus data acquisition (DAQ)

board, which includes eight serial 24-bit analog-to-digital

converter (ADC) channels, two digital-to-analog

converters (DACs), a serial interface, USB connector,

digital I/O pins, SDRAM memory buffer, and a field-

programmable gate array (FPGA). Figure 3 shows the

diagram of the DAQ board. The FPGA assigns a block of

registers for each connected device and these registers can

be read or written by Modbus protocol. For instance,

ADCs convert an analog signal to digital data and store

digital data in the FPGA. Then the FPGA sends this data

to the XPort via serial communications, and the XPort

transfers all data to the remote clients with the Modbus

protocol.

Figure 3: The Diagram of the Modbus DAQ Board.

Four types of Modbus protocol messages are defined

for this prototype. They are Write Single Registers

Request with function code 0x06, Read Holding Registers

Request with function code 0x03, Response message to

Read Request with function code 0x03, and the Exception

Response with function code 0x88. For instance, a

protocol encoding for a Read Request is 0100 0000 0006

01 03 0000 0001. Here, the first four bytes 0100 are the

Transaction ID, the second four bytes 0000 are the

Protocol ID, the third four bytes 0006 are the Length, 03

is the Function code, the next 0000 is the starting address,

and the last 0001 is the quantity of register. For this

Request, the Response will be 0100 0000 0005 01 03 02

3478 resulting in two bytes of data 0x3478.

EPICS Modbus

The EPICS Modbus package which is a Modbus Driver

Support for Modbus Protocol under EPICS system was

installed for the Modbus applications[5]. The architecture

of the Modbus module consists of the following four

layers: EPICS Asyn Device Support, EPICS Asyn Port

driver, Asyn Interpose Interface, and Asyn Port Driver

(Figure 3). The EPICS Asyn Device Support is the

general purpose device support provided with asyn. It is

separated with the Modbus package and there is no

special device support needed with Modbus. The EPICS

Asyn Port Driver functions as a Modbus client. It

communicates with EPICS Asyn Device Support using

the standard asyn interfaces, such as asyInt32,

asynUInt32Digital, etc. This driver sends and receives

device-independent Modbus frames via the standard

asynOctet interface to the asyn Interpose Interface layer.

The asyn Interpose Interface layer communicates via the

standard asynOctet interface to both the overlying

Modbus driver (layer 2) and to the underlying asyn

hardware port driver. The asyn Port Driver handles the

low-level TCP/IP communication. It is a standard port

driver provided by asyn, such as drvAsynIPPort. So, we

can see only layer 2 and layer 3 on the Modbus package.

Figure 4: The Architecture of EPICS Modbus Module.

Each Modbus port driver is assigned a single Modbus

function code and a single contiguous range of Modbus

memory up to 125 words. Before a Modbus port driver

can be created, the TCP/IP port driver that directly

communicates with the hardware should be first to be

generated. The following is step-by-step procedure to

create a specific Modbus port driver:

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA024

Control Systems Upgrades
TUPHA024

425

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

 Run the function drvAsynIPPortConfigure

(“ssa1”, “129.57.200.226:502”, 0, 0, 1) to create
an asyn IP port driver named “ssa1” on port 502
at the Modbus server’s with IP address of
“129.57.200.226”.

 Run the function modbusInterposeConfig(“ssa1”,
0, 2000, 0) to configure the interpose driver with

the name of “ssa1”, TCP/IP Modbus link, 2000
ms of timeout, and no write-delay.

 Once the asyn IP port diver is created and the

interpose driver is configured, the command

drvModbusAsynConfigure(“RF_In”, “ssa1, 0, 3,
1, 125, 0, 100, “RK”) was called to create a
Modbus port named “RF_In” on the asyn IP port
“ssa1”, the slaveAddress or “Unit ID” of “0”,
Modbus function code 3, the start address “1” for
the Modbus data segment, the length of 125 data

segment, the default data type 0, polling delay

100 msec, and a parameter “RK”.
 Load the database for the Modbus port by calling

dbLoadTemplate(“ssa1.substitutions”).

Modbus for RF Amplifier Control

The Crymodule Test Facility (CMTF) at Jefferson Lab

is a facility that conducts performance testing of newly

designed cryomodules. An example cryomodule contains

eight cavities of nine cells each with coaxial Radio

Frequency (RF) power couplers operation at 1.3 GHz and

eight Solid State RF Amplifiers (SSA) providing the RF

power. The RF amplifier is a self-contained system that

produces RF power, encompasses water-cooling and

circuit protection, and can also be controlled with a

Lantronix XPort. We developed the Modbus application

for control of all RF amplifiers. Each amplifier has its

own IP Port driver name and multiple Modbus ports, such

as, “RF1_In_word” for read and “RF1_Out_Word” for
write. Figure 5 shows the control screen of SSA1.

Function code 0x06 is applied to write six registers on the

SSA, and has operations of Power Supply Enable/Disable,

RF Enable/Disable, Power Supply Output Voltage setting,

Fault Reset, and System Reboot. Over 500 registers can

be read by using function code 0x03. These registers

include AC, DC Power Supplier status, RF power,

temperature of all devices, cooling water, unit current, and

so on. All the read back data will be updated once a

second. All eight SSAs are controlled by a single soft IOC

that runs in a Linux machine.

Figure 5: RF Amplifier Operational Control Screen.

CONCLUSIONS

The Modbus data acquisition board, based on the XPort

and Modbus TCP/IP protocol, has been prototyped. The

board can be used in various applications that require

remote communications. The Modbus driver support for

Modbus protocol under EPICS is installed and applied for

the cryomodule RF amplifier control system. The

configuration of XPort, Modbus TCP/IP, and the EPICS

Modbus package is easy to setup and suitable for

applications that do not require high-speed

communications.

REFERENCES

[1] J. Odagiri, etc. “Interfacing Modbus Plus to EPICS for
KEK Accelerator Control System”, Proceeding of
ICALEPCS’99, Trieste, Italy, Page 367-369.

[2] S. Cohen, etc. “Modbus/TCP Controller for the Power
Supplies in ALS BTS Beam Line”, Proceeding of PAC’07,
Albuquerque, New Mexico, USA Page 425-427.

[3] Y.K. Chen, etc. “Application of Modbus-TCP in TPS
Control System”, Proceeding of IPAC’10, Kyoto, Japan,
Page 2719-2721.

[4] Modbus Messaging on TCP/IP Implementation Guide
V1.0b,
http://www.modbus.org/docs/Modbus_Messaging_Implem
entation_Guide_V1_0b.pdf

[5] Driver Support for Modbus Protocol under EPICS R2-10-1,
http://cars9.uchicago.edu/software/epics/ModbusDoc
.html

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA024

TUPHA024
426

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control Systems Upgrades

