
CONCEPTION AND REALIZATION OF THE VERSIONING OF
DATABASES BETWEEN TWO RESEARCH INSTITUTES

S. Mueller, R. Mueller, GSI, Darmstadt, Germany

Abstract
This paper describes the version control of oracle

databases across different environments. The basis of this
paper is the collaboration between the GSI Helmholtz Centre
for Heavy Ion Research (GSI) and the European Organiza-
tion for Nuclear Research (CERN) on several aspects of the
control system.
The goal is to provide a sufficient and practical concept to
improve database synchronization and version control for
the database landscape of the two research facilities.

First, the relevant requirements for both research facilities
were identified and compared, leading to the creation of a
shared catalog of requirements. In the process database tools,
such as Liquibase and Flyway, were used and integrated as
prototypes into the Oracle database landscape.
During the implementation of prototypes several issues

were identified, which arose from the established situation
of two collaborating departments of the research facilities.
Requirements on the prototype were, to be flexible enough
to adapt to the given conditions of the database landscape
and an easy integration without too many changes into the
existing development environment.

The creation of a flexible and adjustable versioning system
enables the two research facilities to use, synchronize and
update the shared database landscape.

INITIAL SITUATION
CERN and GSI collaborate since 2008 on the settings

management framework LSA (LSA - LHC software archi-
tecture [1]) and the device controller software framework
FESA (FESA - frontend software architecture [2]). During
the collaboration so far, the main focus was on the software
and software versioning and not on the database. The LSA
and FESA frameworks have grown between the two insti-
tutes and the software is versioned in Subversion [3]. The
databases grows without a system that allows to trace or
track changes. Although, databases can be restored by back-
ups, it is not possible to determine when which changes
were applied and which database change belongs to which
software feature. In addition, there is a lack of tools for the
collaboration environments that allow the interactions on
database level between the institutes, e.g. the easy exchange
of features. In the past, both institutes saved the database
schema changes in separate versioned text files and the or-
der inside the file represented the execution ordering of the
database schema changes.If the changes were executed on
every database environment (development - testing - pro-
duction), they were removed from the file. Therefore, the
traceability of the changes was not provided and only existed
if one compared two revisions of this file. This had, among

other things, the disadvantage that software developers could
not determine on which version of the database the software
is currently running. This is a disadvantage, because the dif-
ferent database environments like development, production
etc. may have different versions of the same schema.

METHODS
First, a requirements catalog of the two institutes was cre-

ated and taken as basis for the choice of the best method to
collaborate and later on for evaluation of a suitable tool. The
second step was to make a model of each possible method
and test these models in a simulation environment. This
approach helped to discover possible issues, which, based
on the concept only, could not be detected. To find out the
institutes requirements, it was necessary to gain an impres-
sion of the actual environment and then ask the developers
about the current state and functional requirements, which
would be needed in the future.

Collecting of Requirements
To get an overview of each institutes requirements, it

was helpful to figure out what the technical backgrounds
were. CERN’s LSA and FESA databases were built without
any system of traceability, due to historical reasons. In the
past, database versioning was uncommon. Because of this,
many databases cannot be setup from scratch. They can be
modified only by applying delta changes, while no global
script for setup exists. Therefore, the versioning method of
choice must be applicable on an existing, as well as on an
empty database. In case of the empty one the scripts should
setup the whole schemas from scratch, also for different
environments like development and production.

Another important point was to analyze, how the existing
traceability system for software versions works. One early
requirement was, that the method for the database should
be integrated into the existing software versioning system.
For example, if the software is versioned in SVN, then the
database scripts should also be stored in SVN. In this case
the developer does not have to use two separate systems, but
instead he can rely on a seamless workflow.

An issue, related specifically to the LSA-framework, was
the availability of a lot of Java-code for interacting with the
database, used to change the configuration of the LSA sys-
tem. To prevent having to maintain the same SQLs in several
locations, it was necessary for the tool to call Java-code for
executing some of the tasks. Another point for importing
data was, that it must be possible to run database imports
scripts after a database migration step.This can be used,
among other things, to repeatably update or import configu-
ration data like calibration curves, granting database rights,
or for compiling invalid objects. The tool for the database

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA041

TUPHA041
478

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management and Processing

Table 1: Requirements

Requirements CERN GSI

Java-Migration X X
Separate Database X X
Traceability X X
Repeatable Jobs X X
Existing Database X
Expanding X
Open source and free X X
Cherry-picking X
Data import X X

migration must also evolve together with the database. If
some features are added to the database, the tool will have to
support these features too. Hence, the tool should we well
supported and used and some kind of plug-in concept would
be helpful.
A requirement of GSI was the separation of the schema

changes from the ones at CERN. Compared to CERN, GSI
is a smaller institute and has fewer developers. The institutes
differ in some development aspects. Since features devel-
oped in the collaboration might have different priorities for
each institute, one GSI requirement was “cherry-picking” of
features from CERN development branch at times, when it
fits GSI’s time schedule. That means GSI must be able to
select the changes, their order and migration time. If GSI
decides that a schema change is needed at a later point in
time or is not needed at all, then the executing order of the
migrations might be changed to fit GSI’s priorities.

Finally, it was required, that the tool has to be open source
and should be free of charge. A summary of the specifica-
tions from both institutes is showed in Table 1 requirements.

Selection Process
After collecting the requirements, the next step was to

select tools which will fit theoretically. As it had to be an
open source tool, there are two popular migration tools on
the market - Flyway and Liquibase. Each of these tools
fits theoretically to the requirements catalog. For a better
exclusion process, an environment was created, which is
similar to the production environments of both departments.
The goal was to simulate the database landscape of both
institutes, to be able to test the chosen migration tools in an
environment close to the real-world. First of all, the database
was converted to a set of Flyway and Liquibase scripts. After
this step, the tools were tested and analyzed with several
predefined use cases derived from the requirements catalog.

Implementation
A DDL export of the recent production databases was

used as a blueprint to setup the scripts for a test environment,
which was important for further evaluation. In our case
it was as close as possible to the productive environment
and therefore allowed to compare the different products and

how they fit with the requirements in near real-life condi-
tions. During the migration the following issues have been
identified:

• Circular dependency: The two schemas LSA and
FESA have internal dependencies into the respective
other schema. While both tools will start to migrate
and thus execute the scripts, this will cause an error at
some point. Both tools works on one specific schema
at a time and the error occurs when a dependent object
from another schema is not available. This situation
occurs only when the two schemas are empty, and when
both are setup from scratch.

• Commons4Oracle: The library Commons4Oracle [4]
- c4o is a collection of database tools and is heavily
used by the LSA and FESA database. C4o can be
installed in its own schema, or inside an existing schema.
At CERN, the c4o database is installed into the LSA
and FESA schemas due to access rights. In this case
the database migration tool has basically to version
two database schemas in one. The c4o schema has an
independent product lifecycle and therefore can not be
easily versioned together with LSA or FESA.

• Different database levels: At both institutes - CERN
and GSI - the database landscape is composed of a de-
velopment, test and production database. Every level of
database needs a different migration script and possibly
a different set of configuration files.

During implementation those three points mentioned
above were to be the most difficult to solve. The circular
dependency is relatively simple to avoid, but there is no
easy way to solve it. Either the database structure will have
to be adapted - this is the best solution - or the script runs
two times at the beginning. At first, the script will stop just
before the dependency would get executed with an error,
after this the other script migrates the database schema with
the missing dependency up to the point were the missing
dependency is created. Finally, the first database script can
finish completely.

The issue where the c4o database schemas is installed into
an existing schema has the difficulty, that the tool Flyway
orders only on the basis of filenames and has no additional
configuration. Liquibase uses an XML-file in which ev-
ery change is configured. Because Flyway only relies on
filenames managing c4o inside another schema is difficult,
Liquibase does a better job because this tool can be config-
ured through XML-files. The way how Flyway works is, it
looks in the folder for the migrations files and generates a
ordered list depending on the filenames. The list will then be
compare with a log table in the schema to determine which
files Flyway has already executed. If new files that are ot of
order are found, like the changes for the c4o, then Flyway
might throw an error because it conflicts with the already ap-
plied executing order. For this issue the c4o can be installed
in a separate schema, but this scenario is not desired. What
also might be possible but was not practically tested, is to
try two Flyway installations, with slightly different config-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA041

Data Management and Processing
TUPHA041

479

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

uration, working on the same schema, one for c4o and one
for the product using it.
The last issue is, how to set-up different database with a

specific version of the schemas. On the production database
only code is executed which has already been tested on the
test- and development-database. This problem can be solved
in different ways. It was decided to work with database
specific maven projects which will include a different set of
migrations depending on the corresponding database that
has to be setup. For example the development database will
include folders, containing scripts also for future planned
releases (e.g. R9, R9.1, R10) and the production database
only already applied releases (e.g. R9, R9.1). Another
possible solution is to use the Liquibase feature to apply
scripts only in a specific ’context’ and to configure in that
way the environment in which a migration should execute.

RESULTS
If both institutes would stick to an agreement, that every

change will be compatible to the other tool, in principle every
institute could handle the change with the tool of his choice.
For example Liquibase users have to set-up the filenames
in a way that Flyway recognizes a sensible execution order.
This is not a common or easy way but it is possible. But
because of the desire for ”cherry-picking” and the versioning
of two schemas (c4o and the product) in one, both tools reach
their limits. Liquibase performs better, it gains flexibility
and has more advantages through the XML-configuration
approach than Flyway a common versioning in Flyway is not
possible because of the difference in execution order when
“cherry-picking”.

Both tools are suitable for continuous delivery. And help
developers to roll-out the software and the database simulta-
neously with a matching set of features.
Another advantage for Liquibase is, that the tool has an

XML parser which can read the XML files and translate
into a SQL query for a respective database type. In this
case the same XML file can be executed for a test on an
Oracle database and in the next step into for example a DB2
database. Since the change is described through XML it is
translated into the appropriate database dialect. Liquibase
also provides the possibility to specify a rollback script for
a migration step.
Flyway’s biggest advantage is also its biggest disadvan-

tage. Flyway uses convention over configuration, so has ba-
sically no configuration files and generates its list of schema
changes based on the filename ordering. Generating sen-
sible version numbers for these schema change scripts in
two different institutes, must be considered when defining
a versioning scheme for the filenames. For example if two
people in each institute generate a new file, and the current
version number is 100, it is not possible that both create
a version 101. Flyway would not execute both migrations,
because the version number needs to be unique. To solve this
issue creation date and time of the file were included into the

version number, like ”V00_01_10102017_1500.sql”. This
file was created on 10.10.2017 at 3 pm (15:00).

STATUS
At the moment at GSI the accelerator controls group uses

Liquibase for database migration. Since GSI was starting
with empty schemas from scratch for the LSA and FESA
products they did not have to care about existing data, con-
trary to that CERN is investigating at the moment how to
handle the already existing content and looking into baselin-
ing its database.

The administrator can execute the migration for the one of
the databases. The import process includes the repeatables
(like some access rights). Figure 1 shows on the right side
the different databases at the accelerator controls depart-
ment (AccDBU: development, AccDBT: testing, AccDBP:
productive).

Figure 1: GSI’s accelerator controls group migration
overview.

SUMMARY/OUTLOOK
The biggest effort is, to introduce the tool in the daily

workflow of the developers. At the beginning the usage of a
database migration tool is a big step. When introducing a
database versioning tool there is no transition, the change
is instant. SQL (or DDL and DCL) [5] cannot be simply
executed on the database anymore, basically all the changes
have to go through the versioning tool. But in long term
the tool has more advantage than disadvantage. Like the
ability to setup a new database from scratch for testing, to
easy setup a database off site, adding in a specific environ-
ment data for Unit-tests, or execute an automatic roll out
of the already tested changes on the production database.
These are just some examples of the advantages that database
migration tools can have. Another point is the possibility
that Liquibase is expandable through plug-ins. The oppor-
tunity to write extensions for Liquibase provides a lot of
possibilities. Another topic currently investigated is the pos-
sibility to managed a part of the content, mainly more or

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA041

TUPHA041
480

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management and Processing

less static configuration, through Liquibase. This is shown
on the left side of Figure 1. The information is kept in con-
figuration files that can also be modified by people that are
not experts on database migrations and imported through
Liquibase ”custom changes”. Which are basically a custom
Liquibase extension [6]. Figure 2 shows the future outlook
of the versioning from both institutes. This status will be
accomplished when the migration of Liquibase is complete.

Figure 2: Overview of the future migration from the accel-
erator controls group from both institutes.

REFERENCES

[1] G. Kruk et al., “LHC Software Architecture (LSA) - Evolution
toward LHC Beam Commissioning”, in Proc. ICALEPCS’07,
Knoxville, TN, USA, paper WOPA03.

[2] Z. Zaharieva, M. Martin Marquez, and M. Peryt, ”Database
Foundation for the Configuration Management of the CERN
Accelerator Controls Systems”, in Proc. ICALEPCS’11, Greno-
ble, France, paper MOMAU004.

[3] M. Clemencic and H. Degaudenzi, “Migration of the Gaudi
and LHCb Software Repositories from CVS to Subversion”,
in Proc. CHEP ’10, Taipei, Taiwan, LHCb-TALK-2010-158.

[4] L. Burdzanowski and C. Roderick, “Renovation Of The CERN
Controls Configuration Service”, in Proc. ICALEPCS’15, Mel-
bourne, Australia, paper MOPGF006.

[5] Types of SQL Statements, https://docs.oracle.com/
cd/B28359_01/server.111/b28286/statements_1001.
htm

[6] Liquibase | Database Refactoring | Change customChange,
http://www.liquibase.org/documentation/
changes/custom_change.html

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA041

Data Management and Processing
TUPHA041

481

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

