
PLC FACTORY: AUTOMATING ROUTINE TASKS IN LARGE-SCALE
PLC SOFTWARE DEVELOPMENT

G. Ulm∗1, F. Bellorini, D. Brodrick, R. Fernandes, N. Levchenko, D. Piso Fernandez,
European Spallation Source ERIC, Lund, Sweden

1also at Chalmers University of Technology, Gothenburg, Sweden

Abstract

At the European Spallation Source ERIC (ESS) in Lund,
Sweden, the entire facility including all its instruments will
be controlled by a large number of programmable logic
controllers (PLCs). Programming PLCs, however, entails a
significant amount of repetition. It is thus an error-prone and
time-consuming task. Given that PLCs interface with hard-
ware, this involves economic aspects as well, due to the fact
that programming errors may cause damage to equipment.
With PLC Factory, we managed to automate repetitive tasks
associated with PLC programming and interfacing PLCs
from EPICS. This tool is used in production at ESS and
has led to a large increase in productivity compared to the
previous status quo. We describe PLC Factory as well as its
embedded domain-specific programming language PLCF],
which it is built upon.

INTRODUCTION

The European Spallation Source ERIC (ESS) in Lund is
building large-scale infrastructure that is projected to include
hundreds of programmable logic controllers (PLCs). Of par-
ticular concern is that PLCs directly control hardware, thus
erroneous instructions may lead to damage to equipment.
An additional problem is that programming PLCs is a rather
repetitive affair. With a small number of PLCs, the tedium is
certainly manageable. However, given the future large-scale
deployment of PLCs at ESS, we were motivated to look
into ways of automating some of the tedium associated with
PLC programming with the dual goal of both saving time
and increasing reliability as computers are better suited to
repetitive tasks than humans.
The structure of this paper is as follows: After describ-

ing the problem we were facing at ESS in some detail, we
present a high-level description of our solution, i.e. the ap-
plication PLC Factory. That section covers how dependen-
cies between devices are implicitly modeled by an in-house
database, the role of template files and how they are pro-
cessed, the detailed execution of PLC Factory via pseu-
docode, a description of the substitutions that are performed
by a custom domain-specific language, a brief discussion of
how we check for consistency in the data we produce, and
an analysis of the computational cost of PLC Factory. This
is followed by a short section on related work, and a section
on future work.

∗ gregor.ulm@alumni.lse.ac.uk

PROBLEM DESCRIPTION
ESS uses a database for configuration management, the

Controls Configuration Database (CCDB). It is conceptually
similar to a system at CERN with the very same name [1].
Yet, CCDB at ESS was developed from scratch. The Facility
for Rare Isotope Beams (FRIB) at Michigan State Univer-
sity is another user of CCDB. CCDB contains static device
information of the entire instrumentation hardware at ESS.

The problem we wanted to solve was to automatically gen-
erate both EPICS database records as well as code blocks in
Structured Control Language (SCL) for the Siemens product
TIA Portal. The former were intended to be complete records
so that they could easily be imported into our local EPICS
installation, the ESS EPICS Environment (EEE). The Exper-
imental Physics and Industrial Control System (EPICS) is a
distributed control system for scientific instruments [2]. The
goal with regards to SCL code generation was to produce
code blocks with relevant device information for a partic-
ular PLC. Furthermore, we wanted to explore approaches
that allow the dynamic computation of values, such as mem-
ory addresses, which, for instance, may increase in fixed
intervals.
CCDB stores information for each device instance and

device type. Devices can be in two kinds of relations. First,
a device is in a controls relationship with each device it
controls. This is a finite number of controlled devices, which
may be zero. Second, a device may also be in a controlled-by
relationship that states which devices it is controlled by. In
order to refer to these hierarchies of dependencies, we will
use the term dependency tree in the following, or simply just
tree. Those trees are only implicitly described by CCDB
entries.
Before the advent of PLC Factory, a PLC programmer

would use a number of templates according to device type,
populate themmanuallywith values taken fromCCDB, hope
to not have made a mistake, and use the resulting files for
configuring EEE or as a starting point for continuing PLC
programming in TIA Portal. This approach is repetitive,
error-prone, and does not scale well with increasingly larger
dependency trees. Thus, we were looking for a solution that
handles the following cases of substitutions in template files:

1. direct substitution, i.e. for a given device d, use prop-
erty p as specified in the corresponding CCDB entry
for d

2. enabling shared properties between devices, in order
to remove redundancies in CCDB

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA046

IT Infrastructure for Control Systems
TUPHA046

495

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



3. automatically managing counters to specify PLC mem-
ory address offsets in EPICS database records

The first problem is straightforward as it is based on a
simple database lookup. The motivation behind the second
issue is that it is not uncommon that devices share property
names and values. This was originally reflected by duplica-
tion of data in CCDB. However, we wanted to reduce such
redundancies in order to decrease the maintenance burden.
The third problem is a greater challenge as part of creating
the output file requires manually incrementing memory ad-
dresses. It also promised a much bigger payoff, considering
that this task, when creating records for many devices, easily
involves hundreds of modifications. While not inherently dif-
ficult, adjusting memory addresses manually is nonetheless
a error-prone and time-consuming task.

SOLUTION
PLC Factory is an application written in Python 2.7 that

automates the three kinds of substitutions we just outlined.1
Those automatic substitutions remove most if not all of the
repetition we encounter when engaging in large-scale PLC
software development. Starting with the foundational con-
cept of a dependency tree, we are going to describe the steps
PLC Factory performs in successively greater detail. Af-
ter presenting a high-level overview, we will move on to
pseudocode and eventually dissect PLCF], the embedded
domain specific language that is at the core of PLC Factory,
and which enables the expressivity and flexibility we are
about to discuss.

Dependency Trees
Since CCDB describes dependency relationships between

devices, this information can be used to construct a depen-
dency tree that explicitly models those relationships. Let us
present a simple example: Consider an element r , which is
the starting point for PLC Factory and the root of the tree we
intend to construct. The root device r controls the devices
u1 and u2, of which the former controls v11 and v12, and the
latter v21. This is illustrated in Fig. 1. In a production setting
such a tree can be arbitrarily deep. Every unique device is
of a particular device type, for instance a PLC or a vacuum
pump. A dependency tree may contain several devices that
are of the same device type.

Template Files
PLC Factory takes a list of template IDs as one of its

inputs. One such ID may be EPICS or TIA, where the for-
mer may designate templates that are used for creating an
EPICS database records file, and the latter SCL code blocks
for TIA Portal. A device type may have template files with
particular IDs attached to it in CCDB. In general, template

1 PLC Factory is an open-source product, licensed under the third version
of the GNU General Public License (GNU GPLv3). The source code
is available at the following repository: https://bitbucket.org/
europeanspallationsource/ics_plc_factory.

Figure 1: Example of a dependency tree. Different shadings
indicate different device types.

files are text files with a fixed structure. Through process-
ing via PLC Factory, certain fields within a template file
are replaced. A simplified example is the substitution of a
field DEVICE_NAME in a template by the concrete name of a
device that is an instance of the device type this template is
associated with.
In addition, header and footer files with a template ID

can be attached to a device type. Those files may be static,
but they could also be regular template files. The main
reasonwhy headers and footers constitute a separate category
is that the header needs to be prepended to the resulting
output file, and the footer appended. For other templates,
the ordering could be arbitrary, which implies that even
though the output of PLC Factory is deterministic, i.e. given
identical inputs, two runs will result in identical output, there
are many possible valid outputs for a given input.

Processing Template Files

Assume that, in Fig. 1, the root device r is of device type
d0, devices ui are of device type d1, v11 and v21 are of device
type d2, while v12 is of a different type, d3. We define the
operator ⊕ as a shorthand for processing template files. This
operator is applied to a device instance x and a specific
template. Templates are retrieved by a function t that takes
as its input a template ID like EPICS and the device type of
x, which is determined by the function d applied to device
x. Thus, the resulting operation is x ⊕ t(id, d(x)). If there is
no such template attached to CCDB, then no output for that
particular device within this tree is produced. Conceptually,
PLC Factory skips such nodes in the tree.

In addition, we define the header file h(id, d(r)) as well as
the footer file f (id, d(r)). The root r has no other templates
associated with it. The concatenation operator is given by the
+ symbol. Template processing has a higher precedence than
concatenation. PLC Factory processes a tree level by level.
The resulting order of the output resulting from processing
the tree in Fig. 1 is a concatenation of the following form:

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA046

TUPHA046
496

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

IT Infrastructure for Control Systems



r ⊕ h(id, d(r)) + u1 ⊕ t(id, d(u1)) + . . .
+ v11 ⊕ t(id, d(v11)) + · · · + r ⊕ f (id, d(r)) (1)

This example describes PLC Factory on a high-level, but
glosses over some of the more intricate steps in template
processing, such as user-specified computations, or resolving
references to properties of both the current device as well as
to devices on a higher level in the hierarchy. These features
are discussed in the subsection on PLCF] further below.

Detailed Execution Order
PLC Factory takes a root device r as well as a list ids

of template IDs as arguments. As stated in the previous
subsection, template IDs specify the kind of the desired
output file, for instance EPICS for EPICS database records
of a tree. For each template ID id, the following algorithm
is executed.

Data: CCDB, root device r , template ID id
Result: list out containing text for post-processing
begin

out← � . collected output
ds← r . list of devices
while ds not � do

d ← ds.pop()
cs← d.controls() . CCDB lookup
while cs not � do

c← cs.pop()
if t(id, d(c)) ∈ CCDB then

out← out + c ⊕ t(id, d(c))
cs′← c.controls()
ds← ds + cs′

end
end

end
out← r ⊕ h(id, d(r)) + out + r ⊕ f (id, d(r))

end
Algorithm 1: Processing a dependency tree

The method controls() queries CCDB in order to de-
termine which devices cs are controlled by a given device d,
while the method pop() removes the first element from a
list, and returns it. The function t retrieves templates, while
the function d determines the type of a device, as described
further above.

All lookup operations are memoised, i.e. their results are
stored in-memory, in a hash table. Whenever a lookup is
performed, this hash table is first queried. Only if a certain
device has not yet been encountered, a request is sent to
CCDB via the network. This means that PLC Factory will
not issue unnecessary requests to CCDB as in-memory data
is always queried first. This fact is particularly relevant for
the later subsection on scaling behavior of PLC Factory.
PLC Factory creates output files by processing a depen-

dency tree in a consistent order. In general, templates are

attached to device types, but CCDB also contains informa-
tion related to each device instance. For a given template ID,
template processing of a device d involves retrieving both
the template associated with the device type of d as well as
retrieving the instance-specific properties of d from CCDB.
Furthermore, the root element of a tree may have a header
or footer file attached to it, which are processed at the very
end.

PLCF], An Embedded Domain-Specific Language
A central feature of PLC Factory is the embedded domain-

specific programming language PLCF]. Essentially, PLCF]
is a mini programming language for simple expressions,
which are embedded in template files. For each such ex-
pression, PLCF] performs a number of substitutions and
evaluations, with the goal of eventually producing a valid
Python expression. Those Python expressions are finally
evaluated and their resulting values placed in a template file
with the goal of producing the final output. PLC developers
define PLCF] expressions within template files. Those ex-
pressions are evaluated while PLC Factory processes the set
of template files that are associated with a tree.

PLCF] solves the following two problems:

Shared Property Values CCDB contains properties of
each device. However, it is a relatively frequent occurrence
that a device d ′ which is controlled by d shares some of its
properties as well as the values associated with them. We
refer to this as shared property values. A straightforward
solution is to store those property values in CCDB for both
d and d ′. However, this leads not only to redundancies, it
also increases the maintenance burden as property values
need to be updated for several devices at once. Due to its
repetitiveness, this is a potentially error-prone activity.

Memory Address Management A potentially even
more tedious and repetitive task is the manual management
of memory addresses, and their stepwise increments in
EPICS records and SCL files. In an SCL source code file
for a moderately complex tree, a PLC developer may need
to enter many hundreds of memory locations, and keep
different step sizes in mind.

The general principle is that a PLC developer has the
freedom to define an unlimited number of expressions in
PLCF] as part of a template file. Their general format is
[PLCF] < expression >]. PLCF] expressions are even-
tually transformed into valid Python expressions. PLCF]
knows a restricted number of keywords. With the exception
of counter variables and #HASH, these keywords are not dis-
cussed in this paper, however. Furthermore, it is possible to
call user-defined functions, which need to be defined in an
external source code file. This is an advanced feature, which
we will not discuss it in this paper either.

Resolving Local Device Properties This is the first
of three increasingly complex use cases that illustrate the

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA046

IT Infrastructure for Control Systems
TUPHA046

497

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



power and flexibility of PLCF]. A user may want to perform
simple arithmetic operations involving properties related to
the current device, e.g.

[PLCF# DataBlockStartOffset + 1]

This means that the value of the CCDB property
DataBlockStartOffset associated with the current de-
vice will be used for this computation. The lookup happens
in reverse, though. Instead of looking up a property name
that is part of a PLCF] expression in CCDB, PLC Factory
requests all property names and values for the device it is cur-
rently processing. Afterwards, PLC Factory looks for each
property name in the provided PLCF] expression. If there
is a match, it performs a substitution with the associated
property value from CCDB.

While this approach may appear counter-intuitive at first,
it ensures that PLC Factory is highly flexible as it does not
need to have any knowledge of concrete property names. In
contrast, a more straightforward substitution would be based
on known property names, similar to how certain keywords,
e.g. #HASH, are handled. Such an approach, however, would
be much more difficult to maintain. In contrast, with the
chosen approach a user can define any property name in
CCDB and rest assured that its value will be correctly used
when processing template files — as long as both the prop-
erty name in CCDB and the property name in the associated
template file match. This does not require any modification
of PLC Factory itself as the tool is fully agnostic of property
names.

Resolving Shared Device Properties Recall that
properties may be shared by devices within a tree. PLCF]
knows the special operator ↑, pronounced as "up" and
represented by the caret symbol (^).2 Using the up operator,
a PLC developer only needs to update a shared property
for a parent device in the tree.3 All child nodes can subse-
quently refer to this one property. In code, it looks as follows:

[PLCF# ^(DataBlockStartOffset) + 1]

Being able to refer to shared properties in this way greatly
reduces the maintenance burden as we only need to update,
in the case of a property that is universally shared among
devices within a tree, one single entry in CCDB instead of a
potentially very large number of entries.

Handling Global Counter Variables Template files
may contain global counter variables. In order to make
2 As we later learnt, this design decision happened to be an unintentional
throwback to the early days of computing. The original 1963 ASCII
standard knew an upwards arrow symbol. However, it was replaced by a
caret in its 1965 revision.

3 This is a simplification. In reality, the root of a dependency tree does not
need to contain the property value a dependent device is using. Instead,
PLC Factory will traverse the entire implicit tree that is specified by
CCDB. Thus, a shared property may eventually be looked up in a device
that is located many levels above the root of the chosen dependency tree.

PLCF] properly handle those variables, the only requirement
is to specify the increment of the used counters in a template
file. Modifying the previous example, one of our template
files may contain the following statement:

[PLCF# ^(DataBlockStartOffset) + Counter1]

Processing counter variables happens as a separate post-
processing step. To refer to the algorithm presented earlier,
post-processing is performed on the output out, and subse-
quently written to a text file. Counter variables dynamically
change as they may be incremented with each additionally
processed template. While part of the motivation behind au-
tomating memory allocations and computing offsets is due
to wanting to fill up the available memory block by block in
a consistent manner, the main reason for automating this task
emerges in the interplay between EPICS database records
and their corresponding SCL files. This is briefly discussed
in the subsection on consistency checks further below.

Evaluation Order
The evaluation order of a PLCF] expression is as follows:

1. look up shared properties

2. look up local properties

3. process counter variables

4. evaluate the resulting expression in Python

This order is always maintained, although each of the
first three steps is optional. After the last step, the PLCF]
designators, i.e. [PLCF# and the closing square bracket ] are
dropped and the computed value is inserted into the output.

Consistency Checks
One of the goals of PLC Factory is to make large-scale

PLC programming less error-prone. Thus, we implemented
a measure for indicating whether properties and property
values associated with the devices within a tree have been
modified, possibly by a different user. This is, for instance,
useful in order to quickly verify whether there have been
changes of related data in CCDB after creating a set of
output files. Assume a user receives SCL and EPICS files
for a given dependency tree. By comparing the hash value
contained in the header of both the SCL source file and the
EPICS database records, it can be quickly verified whether
both files refer to the exact same tree. The hash value is used
to compare the consistency between structurally different
files. Thus, using a tool like diff would not be feasible.
Time stamps would not be feasible either, as those would
differ between two executions of PLC Factory even if all
values of the dependency tree were the same.

It is important that the memory locations in a set of EPICS
database records correspond to the associated SCL file. The
reason is that a mismatch may lead to unexpected behavior,
like opening the wrong valve. In order to avoid that kind of

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA046

TUPHA046
498

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

IT Infrastructure for Control Systems



problem, it is essential to quickly verify the consistency of
both SCL files and EPICS database records. PLC Factory
computes a hash value for a tree in a deterministic manner.
A user is able to access this value by placing the keyword
#HASH in a template file. This value is also printed to the
command line after processing a dependency tree with PLC
Factory.

Scaling Behavior
PLC Factory is a highly efficient tool that scales very well

in practice. The bottleneck of the execution is due to in-
put/output operations like accessing CCDB via the network,
downloading template files, opening those files, and writing
the final output. For every device type and every device
in a tree only one CCDB query is performed. Accessing
information repeatedly queries an in-memory cache instead.
As a consequence, PLC Factory runs in linear time, viz.
O(m + n) = O(n), where m is the number of device types,
of which there is one template associated with each device
type, and n the number of devices.4 CCDB needs to be
accessed once for every device in a tree. Internal operations
are disregarded in this calculation as their cost is negligible
in comparison to the cost of accessing CCDB via the net-
work; writing the final output is interpreted as a constant.
Processing header and footer files is likewise interpreted as
a constant. Thus, PLC Factory scales linearly in the number
of unique devices.

On a related note, processing additional template IDs as-
sociated with a dependency tree is only a constant additional
cost, depending on the number of device types. For example,
if the user desires to create EPICS database records and SCL
code blocks, then PLC Factory almost exclusively relies on
cached information. The only additional cost consists of
querying CCDB for templates of the chosen ID for each
device type in the tree because information regarding each
device instance already resides in-memory at that point.

To quantify the runtime empirically: on a 2011 MacBook
Air with an 1.8 GHz processor, PLC Factory processes three
different template IDs for a tree containing around 40 devices
in roughly 7 seconds in total.

RELATED WORK
While a first prototype of PLC Factory was being put in

production at ESS in July 2016, a paper on a similar system,
developed by Borrowman and Taylor at Observatory Sci-
ences Ltd., appeared [5]. They describe a one-pass method
for inserting values into EPICS database records, using a
Python script that takes precomputed values from a Mi-
crosoft Excel sheet as its input. In comparison, PLC Factory
seems more flexible as values do not need to be precom-
puted. Instead, they are generated on-the-fly, while ensuring
4 In case the result ofO(n) is not immediately obvious: a tree contains n
unique devices which are instances of m device types. We also know that
the number of device types is at most as large as the number of unique
devices. In reality, though,m is much less than n. Thus, we can identify a
leading coefficient, which is subsequently dropped: O(m+n) ≤ O(2n) =
O(n).

consistency. In addition, due to its generic approach, PLC
Factory is able to generate SCL code blocks as well.

FUTURE WORK
PLC Factory is already successfully used in production at

ESS. We are currently evaluating two directions for future
work, however.

First, we are aware that not all users whomay be interested
in PLC Factory are endeared to the command line. Thus, we
are considering not only adding a graphical front end, but
to turn PLC Factory into the backbone of an internal web-
based application. In order to generate the desired output,
users would only have to select the root device of any of the
possible dependency trees within the entire instrumentation
at ESS and select template IDs.
Second, we are considering extending PLC Factory by

adding an exporter to automatically generate operator inter-
faces (OPIs). The motivation is likewise to make this tool
even more user-friendly. OPIs are well established in PLC
programming. For instance, Cockrell et. al. [4] have estab-
lished a number of guidelines for OPIs in this context, which
might be a good starting point for our ownwork. An example
of an OPI for a PLC system is described by Casas-Cubillos
et. al. [3].

Moreover, we would like to spread the word on PLC Fac-
tory. As was mentioned in the beginning of this paper, our
version of CCDB is also used at FRIB. In case CCDB gains
further users, PLC Factory might gain a foothold at other re-
search institutions. Due to its flexibility, PLC Factory can be
easily tailored to use other database backends as well. Thus,
we believe that any institution that deals with the problem
of large-scale PLC deployment with a toolchain similar to
ours could be potentially interested in using PLC Factory
and possibly contribute to its future development.

Finally, it has to be stressed again that PLC Factory does
not rely on any domain knowledge related to PLC program-
ming or EPICS. Due to its generic approach to template
processing it is therefore entirely feasible to use it in many
other domains as well, as it is essentially a universal template-
based substitution engine. In order to encourage adoption
of PLC Factory, we released its source code under the GNU
General Public License.

ACKNOWLEDGEMENTS
Feedback to drafts of this paper has been provided by

Claudio Rosati (ESS), Oskar Abrahamsson (Chalmers), and
Yi Li (Fraunhofer-Chalmers Research Centre for Industrial
Mathematics).

REFERENCES
[1] Z. Zaharieva, M. Peryt, and M. Martin Marquez, “Database

foundation for the configuration management of the CERN
accelerator controls systems”, in ICALEPCS’11, Grenoble,
France, Oct. 2011, pp. 48–51.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA046

IT Infrastructure for Control Systems
TUPHA046

499

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



[2] L.R. Dalesio, M.R. Kraimer, and A.J. Kozubal, “EPICS archi-
tecture”, in ICALEPCS’91, KEK, Tsukuba, Japan, Nov. 1991,
pp. 278–282..

[3] J. Casas-Cubillos, P. Gomes, P. Gayet, F.J. Varas, C.H. Sicard,
and M. Pezzetti, “Application of object-based industrial con-
trols for cryogenics”, CERN, Geneva, Switzerland, Rep.
CERN-LHC-2002-007-IAS, 2002.

[4] L. Cockrell and T.M. Sander, “Selecting a man/machine in-
terface for a PLC-based process control system”, IEEE Trans-

actions on Industry Applications, vol. 28, no. 4, pp. 945–953,
1992.

[5] A.J. Borrowman and P. Taylor, “Can your software engineer
program your PLC?”, in Proc. SPIE 9913, Software and Cy-
berinfrastructure for Astronomy IV, article no. 99131S, July
2016, doi:10.1117/12.2232590

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA046

TUPHA046
500

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

IT Infrastructure for Control Systems


