
A RELIABLE WHITE RABBIT NETWORK FOR THE FAIR
GENERAL TIMING MACHINE

C. Prados1, A. Hahn, J. Bai, GSI, Darmstadt Germany
A. Suresh, Hochschule Darmstadt, Darmstadt, Germany

1 also at Technical University Darmstadt, Darmstadt, Germany

Abstract
A new timing system based on White Rabbit (WR) is

being developed for the upcoming FAIR facility at GSI in
collaboration with CERN and other partners. The General
Timing Machine (GTM) is responsible for the
synchronization of nodes and distribution of timing
events, which allows the real-time control of the
accelerator equipment. WR is a time-deterministic, low
latency Ethernet-based network for general data transfer
and sub-ns time and frequency distribution. The FAIR
WR network is considered operational only if it provides
deterministic and resilient data delivery and reliable time
distribution. In order to achieve this level of service,
methods and techniques to increase the reliability of the
GTM and WR network has been studied and evaluated.
Besides, GSI has developed a network monitoring and
logging system to measure the performance and detect
failures of the WR network. Finally, we describe the
continuous integration system at GSI and how it has
improve the overall reliability of the GTM.

FAIR GENERAL TIMING MACHINE
The FAIR General Timing Machine (GTM) is

responsible for the synchronization of Front End
Controllers (FeC) with nanosecond accuracy and
distribution of Control Messages (CM) for the hard real-
time control of the GSI and FAIR accelerator complex.

The hard real-time control is achieved in several steps.
First, the Settings Management [1] distributes the settings
of the FeCs over a standard network. Second, the
activities in the FeCs are prepared by the Front-End
Software FESA [2]. Finally, the GMT generates on-time
actions at the FECs thanks to the CM broadcasted by the
Data Master (DM) [3]. These CMs are sent over the
White Rabbit (WR) [4] network, which is also responsible
for the synchronization of the FeCs, DM and WR
switches.

The GMT have been designed to scale up to 2000 FeCs
and synchronize them in the range of 1 to 5 ns with ps
precision. The GSI and FAIR accelerator facilities
requires the GMT to work reliably in routine operation
24/7.

The GMT is linked to other systems and must be able to
react, within 10 ms, to interlock and external signals [5].

All systems connected to the timing system depend on it’s
high availability. Distribution of CM must be guaranteed
for commissioning and testing even when the accelerator

does not produce beam. Therefore the loss rate of CM in
WR network cannot go beyond 1 CM per year.

Table 1: FAIR GTM Requirements

Requirements FAIR GMT

Time Resolution 1 to 5 ns

Precision (Std dev.) ≤10 ps

GMT Reaction Time ≤10 ms

CM Failure Rate 3.17 10−12

CM Loss Rate 1 CM/year

Num FeCs ≤ 2000

Links Distance 1 to 2000 m

BUILDING A RELIABLE GENERAL
TIMING MACHINE NETWORK

The Figure 1 depicts the components and topology of
the GTM network. The network is established by the
interconnection of WR Switches and WR Nodes using
fibre optic cables. The GTM network is meant to transport
CMs to the FeCs and synchronize the WR Nodes of the
FeCs. According to the requirements of the GTM, Table
1, the WR network has to provide and guarantee timing
and data delivery even under abnormal operations and
conditions. Therefore the reliability of the GTM WR
network relies on:

• Ethernet traffic delivery within upper-bond latency.
• Synchronization of the network and FeCs.

Figure 1: Overview of the FAIR general timing machine.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA091

Timing and Synchronization
TUPHA091

627

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Ethernet networks, like WR, don’t provide by definition
any mechanism to guarantee the level of reliability
required by the FAIR GTM. In order to increase the
reliability of the networks, companies and standardization
groups have developed since years protocols and
techniques. The WR Switch has already adopted some of
these mechanisms.

In the next sections, we describe methodologies and
strategies to achieve reliable data and timing delivery,
either adopting existing features of the WR switch or
proposing new approaches.

Resilient Data Delivery
The principal source of network traffic in the GMT
network is the DM. The DM broadcasts CMs from the top
of the network to all FeCs. It is critical for the control of
the accelerator complex resilient deliver of CMs to the
FeCs over the GMT. Single point of failures (SPOF) in
the network or bit errors in the Ethernet frames may be
the cause of unsuccessful delivery of data.

The GMT network overcomes SPOFs deploying
redundant components: WR switches and links. As the
Fig. 1 shows, the tree topology of the GMT network can
overcome SPOFs thanks to the redundant links between
the WR Switches. Unfortunately, this strategy, redundant
links, creates undesired logical loops in the network.

A family of network protocols, the Spanning Tree
Protocols, could be used to create spanning tree
topologies. These protocols disable those links that
doesn’t belong to the spanning tree. In the event of link
failure, SPOF, the protocol reconfigures the spanning tree
and enables the redundant link to solve the SPOF. During
the reconfiguration, Ethernet frames may get lost and
won’t be delivered. An Enhanced versions of Spanning
Tree Protocol [6], supporting seamless redundancy, has
been proposed and tested in the White Rabbit community.

We propose an alternative to the Spanning Tree
Protocols, the Link Aggregation Protocol (LAG) [7].
LAG provides methods to combine multiple links of a
network to form a single link. This approach provides
redundancy in the network without loops and
reconfiguration of the topology. The links compressed in a
LAG are always active. In the event of SPOF, the LAG
engine is notified and will forward the frames only to the
active links. A set of rules defined by the users in the
LAG engine, determine the output link, among the
aggregate links, for every incoming frame.

Ethernet frames travel over a noise and imperfect
channel, the Ethernet network. Bits of the frame may be
altered in the channel for different reasons, resulting in
flawed or lost frames. The loss rate of CMs required by
the GTM is 1 CM per year, 3.17 10-12,, expressed in terms
of failure rate. The global bit error rate (BER) of the
GTM network is 4.10−11, 3.17 10-10 in terms of frame error
rate (FER) [8]. The GTM BER and FER are calculated
taking into account: logical topology of the network,
number of FeCs, BER of cabling and traffic bandwidth.

The loss rate of frames in the GMT network is ten times
bigger than the specified. Classical network protocols,
like TCP, achieve resilient and reliable data delivery
retransmitting the missing frames. Unfortunately, we can’t
rely on retransmission since the delivery of the CMs
won’t be anymore within the specified upper-bound
latency. An alternative technique to retransmission, is the
Forward Error Correction (FEC). This technique consists
in sending, from the DM, the original CMs and redundant
data generated by a coding algorithm. This redundant
information allows the FeCs to detect and correct a limit
number of bit errors in the frame using a decoding
algorithm.

The Fig. 2 shows a FEC scheme capable of overcoming
the loss of packets in the network and fix bit error in the
Ethernet frames. The encoding is done in two steps. First,
the CMs are encoded using the linear error correcting
called LDPC [9]. The LDPC code generates redundant
data using the original CM. The DM sends the original
CM along with the redundant information encapsulated in
N frames. The LDPC are able to retrieve the original CM
if at least M out N frames are delivered. The selection of
N and M depends on the use case and it has to be carefully
calculated. In the second step, the LDPC encoded frames,
in turn, are encoded using the Golay Code [10]. This code
is able to detect bit errors in the Ethernet frames and
repair up 3-bit errors.

Figure 2: GTM forward error correction scheme.

In conclusion, the LDPC provide resilience against loss
of frames in the network and the Golay Code repairs
flawed frames. For the FAIR GMT we propose a LDPD
with N=3 and M=2.

As we have stated before, the LAG is a suitable
protocol for seamless redundancy in the event of a SPOF.
Yet the LAG can not avoid losses of CMs if a network
device fails (e.g. fibre optic) and CMs were in transit. The
LAG uses a set of rules, defined by the users, to forward
the frames among the aggregated links. These rules can
be defined in such a way that the LAG forwards the
encoded frames in specific links creating a multipath. The
encoded frames reach the very same FECs following
different paths. The Figure 1 illustrates the multipath
strategy. The dashed lines represent a LAG groups, two
links per WR switch. The half of the encoded frames
follows a complete different path as the other half of the
frames. If the LDPC encoder is capable of retrieving the
original CM receiving two out four encoded frames, this

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA091

TUPHA091
628

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Timing and Synchronization

scheme overcomes SPOF in the network without loss
frames or CMs.

Deterministic Data Delivery
The GMT network requires data delivery of CMs

within 500 µs upper bound latency so as to guarantee the
reaction of the GMT within 10 ms to interlock and
external signals.

The latency of of Ethernet network has a constant and
variable component. The latency of the frames throughout
the network links (fibre optics or copper) is constant, with
a negligible jitter. On the contrary, the switches in a
network introduce a variable latency during the switching
procedure of the Ethernet frames. The latency of the
switches depends on the design of the switch and the
amount of traffic in transit. The WR switches has been
carefully designed to achieve low latency switching
adopting a cut-through architecture: WR switches start
forwarding a Ethernet frame to the destination port/s as
soon as the frame arrives, even before the whole frame
has been received. A dedicated module in the WR switch,
RTU Forwarding Engine, decides based on the destination
MAC address, to which port/s a frame has to be
forwarded [6].

As we have pointed out already, the amount of frames
in transit in an Ethernet switch influences the latency. In
this regard, the Ethernet standardization group introduced
to the protocol a useful scheme to bound the network
latencies, quality-of-service (QoS) [11]. The QoS defines
eight levels of service expressed in a special 3-bit field of
the Ethernet header frame. The switch prioritizes the
forwarding of the frames according to the QoS in this
field. If the switch can’t forward intermediately the
incoming frames, it stores the frames in QoS queues
according to its level of service.

In GMT, the CM frames from the DM are tagged with
the highest QoS, 7th, so as to achieve the lowest latency
possible. In FAIR, the DM is not the only source of
network traffic in the WR network. Other subsystems of
the accelerator like the Bunch to Bucket Transfer System
(B2B) [12] or the Machine Protection System (MPS) [13],
will probably make use of the GMT network to control
their equipment. The last source of network traffic is the
Management Server, responsible of the network
management protocols like DHCP, SNMP, LLDP etc…

The B2B triggers the beam extraction and injection
between synchrotrons at GSI. The B2B issues a
handshake of frames between two special FeCs, the B2B
Source and B2B Target. The MPS is responsible for the
protection of the accelerator machines and safety of
personnel. The MPS for FAIR is not fully specified yet.
According to the last specifications, a selected group of
FeCs in the network send, at regulars intervals, Ethernet
frames to a specific FeC, MPS, as a heartbeat signal. The
Table 2 and Table 3 summarize the traffic and the data
source in the GTM.

The WR switch implements methods, along with the
QoS, to guarantee that CMs are forwarded in within an
upper-bond latency. The forwarding engine of the WR
switch introduces constant latencies for CMs with priory
7th and broadcast destination MAC address. On top of
that, the WR switch implements a strict priority (SP)
queue algorithm to schedule the forwarding of frames
from the QoS queues. The WR switch dispatch first CM
frames from the 7th QoS, as long as the queue is not
empty. Then the frames in lower QoS queues are
scheduled to be forwarded. This scheme guarantees the
deterministic delivery of CMs in the GTM with an upper-
bond latency of 500 µs in a network with 5 layers of
switches [14].

Table 2: GTM WR Network Traffic and Priorities

Application
Traffic

Bandwith
Prio VLAN ID

DM Broadcast 100 Mbit/s 7 100

DM Unicast 10 Mbit/s 7 100

B2B 25 kbit/s 6 100, 200

MPS 900kbit/s 5 100, 300

Mgmt Traffic ~10 Mbit/s 4-0 400

The B2B and MPS network traffic require also
upper-bond latency. In order to measure the latency for
the traffic of these two systems, we have intensively
tested the WR Switch. The test set-up simulates the
FAIR use case in terms of layer of switches and traffic
in the GTM network. The Table 2 and Table 3 specifies
the bandwidth, VLAN Id and upper bond latency of
every traffic. The tests [14] were carried out with the
Xena Traffic [15] generator and we have followed the
testing methodology for GbE switches, RFC 2889
[16]. The results show latencies beyond the specified
requirements for the B2B and MPS, Tabe 3. There are
peaks of latency going beyond the upper-bound and
even, at times, loss of frames, presumably by queue
overrun. The SP queue algorithm, in the case of B2B
MPS traffic, doesn’t fulfil the requirements. We are in
the process of simulating and testing alternative
queue algorithms like Priority-Based Deficit Weighted
Round Robin.

Table 3: GTM WR Network Traffic Bandwidth

Application
Max Latency/

Layer of Switches
Payload

DM ≤500 us / ≤ 5 200-500 bytes

B2B ≤10 ms / 3 – 5 100 bytes

MPS ≤ 1ms / 3 64 bytes

Mgmt Traffic Best effort 64 – 1518 bytes

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA091

Timing and Synchronization
TUPHA091

629

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Reliable Timing Delivery
WR extends the protocol IEEE 1588 [17], for achieving

sub-nanosecond synchronization with picoseconds jitter.
WR characterizes the asymmetries of the link and
measures the phase shift between the master and slave
clocks [18]. The continuous synchronization of all the
FeCs during operation is critical for the control of FAIR
and GSI accelerators. The GTM production network [19],
made of 8 WR switches and 20 FeCs, exhibits high level
of reliability. More than three months in operation and no
degradation or lost of synchronization has been detected.

The protocol IEEE 1588 supports different topologies
of redundant networks, although the quality of the
synchronization can be affected during the
reconfiguration of the network in the event of SPOFs. The
GTM requires continuous phase alignment and
synchronization of all the FeCs without lost of quality. In
the Phd thesis [6], the author studies and characterize the
problem and proposes a scheme for seamless
reconfiguration in redundant WR network preserving
subns accuracy of synchronisation.

MONITORING AND LOGGING THE
GENERAL TIMING MACHINE

The stated requirements of the FAIR CTS are not only
achieved implementing protocols and network techniques,
but also supervising the performance of the system during
operation. Monitoring and logging systems provide the
means to Timing Network Managers (TNM) to detect,
diagnose and prevent failures and malfunctions of the
system on real-time and analyse the performance of the
system offline.

The performance of the system is evaluated using the
status information of the GTM network and its evolution
and changes. This information can be classify in two
levels: events and alarms. The events represent changes in
the status of devices of the GTM network (e.g. FeC
synchronized) or change of the status of network peers
(e.g. new PTP Clock Master). Alarms are triggered when
the devices reach specific status (e.g. Whiter Rabbit port
down).

In a distributed system like the timing network, the
monitoring and logging information are generated in the
components and is propagated passively or actively to a
central point creating a global status of the GTM network.

Architecture
The Figure 3 describes the architecture of the

Monitoring and Logging System at GSI. The source of
status information are the FeCs and WR Switches. The
Monitoring and Logging Server (MLS) gathers the status
of the network and with the help of the frameworks
Icinga[20] and LogStash[21]. A secondary network, the
Management network, interconnects the management
interfaces of all devices and transports the monitoring

information. The WR Network, besides timing and
control events, transports logging information and alarms.
Finally, a set of protocols: SNMP, Etherbone [23] and
Syslog, stablish the communication and transport the
information from the devices to the MLS.

Monitoring
A monitoring systems basically observe and checks the

state of a system and notifies events. The system at FAIR,
uses the Icinga Framework to gather, display and digest
the monitoring information. The Icinga framework is
programmed to issue periodically SNMP requests to read
out the information from the WR Switches. In the case of
the FeCs, the host CPU reads out the status of the WR
Nodes over the host bus. All this information is sent
periodically from the CPU to the Icinga server using
NSCA Passive Check Daemon [22]. At GSI, we have
chosen this strategy over other alternatives because we
want to keep the monitoring network traffic out of GTM
Network. The GTM network will interconnect up to 2.000
FeCs. The simultaneous generation of monitoring
information upstream, from these FeCs to the MLS,
could bring about severe network congestion. The TNM
can configure Icinga to display this information in
different levels and create alarms if a status of the
network reaches of a defined value.

Logging
A logging system records the events and status of the

timing network. This information can be used either for
triggering real-time alarms or off-line analysis of the
information. Both devices, WR switches and FeCs,
generate logging information from the OS of the host
system and transmitted over the Management Network.
Alternatively, the WR TR generates only events related
to WR and are sent over GTM network, the amount of
logging traffic is almost negligible. GSI uses the
framework LogStash [21] to collect, parse and transform
the log information.

Figure 3: Monitoring and logging architecture.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA091

TUPHA091
630

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Timing and Synchronization

System-wide Firmware Watchdog
In the GTM network the maintenance and support of

the WR Switches and FeCs is distributed among the TNM
and the users, respectively. Both parties try their best to
maintain their systems up-to-date with specific
compatible versions of the firmware. Otherwise, the
timing and data distribution can not be guarantee. During
the last years, at GSI, we have faced several updates of
the GTM and we have learnt a lesson. We can’t guarantee
that all the components of GTM network are up-to-date.
There were always situations where some of FeCs
couldn’t be reached and updated during the maintenance
period. In order to improve the update procedure and
guarantee that all the FeCs in the WR network are up-to-
date, we have implemented a system-wide firmware
watchdog to verify that all the FeCs are running
compatible firmware. Using the architecture and
infrastructure of the Monitoring and Logging System, we
have developed an application that verifies the firmware
version of the the FeCs connected to the timing network.
If the version of the firmware is not compatible, the
firmware watchdog disables the port of the WR Switch
where the FeCs is connected to. By doing this, we prevent
potential operations problems of the FeCs and in the WR
network. In addition, the application communicates the
user the event and instruct him to update the firmware.
The status and actions of the firmware watchdog is logged
in the MLS.

DEVELOPMENT AND CONTINUOUS
INTEGRATION OF THE GENERAL

TIMING MACHINE
The GTM is a highly complex development made up of a
large number of sub-components, protocols and
technologies. As example, the Fig. 4 shows the
architecture and some sub-components of a FeC. The sub-
components of the FeCs are being developed by different
groups at GSI, collaborations with other institutes and
Open Software communities. The majority of these
developments are still in constant evolution and change.
New releases come to life asynchronously fixing bugs and
providing new required features to the system. On the
other hand, new releases of the sub-components may
introduce new bugs or blunders. In addition,
collaborative shared developments are really beneficial,
but may be difficult to modify and upgrade without
breaking other functionality. A small and harmless
change, done by one developer in one isolate component
of the system, may expose or bring about performance
problems or failures in other parts of the system.

Figure 4: FeCs architecture and sub-components.

The constant and mingled evolution of the
developments, along with the high complexity of the
FeCs, makes the integration of the sub-components a
challenging and at times, frustrating task. The time
invested in debugging and fixing new corner cases
increases considerably. On top of that, the FeCs, at GSI,
are made up of FPGA-based hardware in different form-
factors, with specific firmware and drivers, which
multiplies the amount of components to update, test and
integrate. Classical development flows are useful in
situations where the development of sub-components is
stable and the requirements and functionalities are clearly
defined. As we stated above, this is not the case in the
development of the CTS and FeCs. In order to delivery a
reliable system under these circumstances and reduce the
testing and debugging effort, we have adopted a
development flow known continuous integration (CI).

The Figure 5 depicts how we have integrated, at GSI,
along with our classical development flow, a CI, where
the updates of the sub-components are automatically built,
deployed and tested without the intervention of the
developers. The architecture and benefits of our CI
system are detailed below.

Continuous Integration System Architecture
Our continuous integration system is made of two sub-

systems. The building server, and a testing environment.

Figure 5: Continuous integration flow.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA091

Timing and Synchronization
TUPHA091

631

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

In the building server we have set up a development
environment with all the tools and compilers required for
the building. We use the popular Jenkies [24] to
automatically download and build the code of the timing
firmware stack. The code of the timing firmware stack is
stored and managed in a Git repository, Bel Projects [25].
The timing firmware is a complex stack of VHDL code,
kernel modules and user spaces tools. We use a
hierarchical structure of makefiles to steer the building
process and resolve dependencies among the projects.

Jenkins starts and logs, every night, the building of the
stack, and notify per email the developers in case of
failures. After building, Jenkins initiate the deployment of
firmware on the testing environment, which recreates a
minimal timing network. Once the deployment of the
timing firmware has concluded successfully (otherwise
Jenkins will notify the developers) the tests start
automatically. We have achieve a moderate level of
automation in the interpretation of the test’s results. The
most remarkable is the notification, to the developers, of
the degradation of the synchronization during the tests.

CONCLUSION
Thanks to the WR techonology the GTM at GSI

deliveries CMs well below the GSI’s latency requirement
and synchronizes steadily a mid-size production network.
Yet there are still open issues regarding the reliability of
the systems: data and timing delivery in the event of
SPOF, resiliant transmission of data and scheduling of
non-CMs frames. As we have presented, there are already
solid technical proposal to improve the in-built reliability
of the GTM.

In addition to the in-built reliability, the monitoring and
logging of the GTM is critical for the reliability of system
in production. Finally, we recomend to use continous
integration practics to reduce the time of integration and
testing of complex system like GTM. Our continous
integration system helps us to maintain thet quality and
reliablity of the system under development.

We would like to ackondlege and thank the great work
done by the WR community, the Experimental Electronics
and Beam Diagnostic departments at GSI.

REFERENCES
[1] J. Fitzek et al., “Settings Management within the FAIR

Control System Based on the CERN LSA Framework”,
Proceedings of PCaPAC’10, Saskatoon, Canada, 2010,
WEPL008.

[2] Al. Schwinn et al., “FESA3-The New Front-End Software
Framework at CERN and the FAIR Facility”, Proceedings
of PCaPAC’10, Saskatoon, Canada, 2010, WECOAA03.

[3] M. Kreider et al., “New developments on the FAIR Timing
Master”, Proceedings of PCaPAC’14, Karlsruhe, Germany,
2014, FPO022.

[4] J. Serrano, P. Alvarez, M. Cattin, E. G. Cota et al., “The
White Rabbit Project”, ICALEPCS’09, Kobe, Japan, 2009.

[5] J. Fitzek et al., F-DS-C-08e, FAIR Detailed Specification
Interlock System.

[6] M. Lipinski, “Methods to Increase Reliability and Ensure
Determinism in a White Rabbit Network”, PhD Thesis,
Warsaw University of Technology, 2016.

[7] IEEE 802.3ad Link Aggregation

[8] C.Prados and M.Lipinski, “White Rabbit and Robustness”,
http://www.ohwr.org/documents/103

[9] RFC 5170 “Low Density Parity Check (LDP) Staircase and
Triangle Forward Error Correction (FEC) Schemes”

[10] S. B. Wicker, Error Control Systems for Digital
Communication and Storage. Prentice Hall, 1995.

[11] IEEE Std 802.1Q Standard for Local and metropolitan area
networks Bridges and Bridged Networks.

[12] J. Bai, “Development of the Timing System for the Bunch-
to-Bucket Transfer between the FAIR Accelerators”, PhD
Thesis, Frankfurt University, 2017.

[13] F-DS-C-31e, FAIR Detailed Specification “Machine
protection systems”.

[14] RFC 2889 Benchmarking Methodology for LAN Switching
Devices.

[15]Xena Traffic Generator, https://xenanetworks.com

[16] C. Prados and J. Bai. “Testing the WR Network of the FAIR
General Machine”.

[17] IEEE 1588-2008. IEEE Standard for Precision Clock
Synchronization Protocol for Networked Measurment and
Control Systems.

[18] T. Włostowski. Precise time and frequency transfer in a
White Rabbit network. Master’s thesis, Warsaw University
of Technology, Warsaw, Poland, May 2011.

[19] M. Kreider et al.,”Launching the Fair Timing System with
CRYRING”, Proceedings of PCaPAC’14, Karlsruhe,
Germany.

[20]Icinga, https://www.icinga.com/

[21]Logstash,
https://www.elastic.co/guide/en/logstash

[22]NSCA, https://docs.nsclient.org/howto/nsca

[23] M. Kreider et al., “Etherbone - A Network Layer for the
Wishbone SoC BusS” Proc. of ICALEPCS 2011, Grenoble,
France, 2011.

[24] Jenkins, https://jenkins.io

[25]Bel Projects, https://github.com/GSI-
CSCO/bel_projects

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA091

TUPHA091
632

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Timing and Synchronization

