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Abstract
A new timing system based on White Rabbit (WR) is

being developed for the upcoming FAIR facility at GSI in
collaboration with CERN and other partners. The General
Timing  Machine  (GTM)  is  responsible  for  the
synchronization  of  nodes  and  distribution  of  timing
events,  which  allows  the  real-time  control  of  the
accelerator  equipment.  WR is  a  time-deterministic,  low
latency Ethernet-based network for general  data transfer
and  sub-ns  time  and  frequency  distribution.  The  FAIR
WR network is considered operational only if it provides
deterministic and resilient data delivery and  reliable time
distribution.  In  order  to  achieve  this  level  of  service,
methods and techniques to increase the reliability of the
GTM and WR network has been studied and evaluated.
Besides,  GSI  has  developed  a  network  monitoring  and
logging  system to  measure  the  performance  and  detect
failures  of  the  WR  network.  Finally,  we  describe  the
continuous  integration  system  at  GSI  and  how  it  has
improve the overall reliability of the GTM.

FAIR GENERAL TIMING MACHINE 
The  FAIR  General  Timing  Machine  (GTM)  is

responsible   for  the  synchronization  of  Front  End
Controllers  (FeC)  with  nanosecond  accuracy  and
distribution of Control Messages (CM) for the hard real-
time control of the GSI and FAIR accelerator complex.  

The hard real-time control is achieved in several steps.
First, the Settings Management [1] distributes the settings
of  the  FeCs  over  a  standard  network.  Second,  the
activities  in  the  FeCs  are  prepared  by  the  Front-End
Software FESA [2]. Finally, the GMT generates on-time
actions at the FECs thanks to the CM broadcasted by the
Data  Master  (DM)  [3].  These  CMs  are  sent  over  the
White Rabbit (WR) [4] network, which is also responsible
for  the  synchronization  of  the  FeCs,  DM  and  WR
switches.

The GMT have been designed to scale up to 2000 FeCs
and synchronize them in the range of 1 to 5 ns with ps
precision.  The  GSI  and  FAIR  accelerator  facilities
requires  the GMT to work reliably in routine operation
24/7.  

The GMT is linked to other systems and must be able to
react, within 10 ms, to interlock  and external signals [5].

All systems connected to the timing system depend on it’s
high availability. Distribution of CM must be guaranteed
for commissioning and testing even when the accelerator

does not produce beam. Therefore the loss rate of CM in
WR network cannot go beyond 1 CM per year.

Table 1: FAIR GTM Requirements

Requirements FAIR GMT

Time Resolution 1 to 5 ns

Precision (Std dev.) ≤10 ps

GMT Reaction Time ≤10 ms

CM Failure Rate 3.17 10−12

CM Loss Rate 1 CM/year

Num FeCs ≤ 2000

Links Distance 1 to 2000 m

BUILDING A RELIABLE  GENERAL
TIMING MACHINE NETWORK

The Figure 1 depicts the components and topology of
the  GTM  network.  The  network  is  established  by  the
interconnection  of  WR Switches  and  WR Nodes  using
fibre optic cables. The GTM network is meant to transport
CMs to the FeCs and synchronize the WR Nodes of the
FeCs. According to the requirements of the GTM, Table
1, the WR network has to provide and guarantee  timing
and data delivery even under abnormal  operations  and
conditions.  Therefore  the  reliability  of  the  GTM  WR
network relies on:

• Ethernet traffic delivery within upper-bond latency.
• Synchronization of the network and FeCs.

Figure 1: Overview of the FAIR general timing machine.
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Ethernet networks, like WR, don’t provide by definition
any  mechanism  to  guarantee  the  level  of  reliability
required  by  the  FAIR  GTM.  In  order  to  increase  the
reliability of the networks, companies and standardization
groups  have  developed  since  years  protocols  and
techniques. The WR Switch has already adopted some of
these mechanisms. 

In  the  next  sections,  we  describe  methodologies  and
strategies  to  achieve  reliable  data  and  timing  delivery,
either  adopting  existing  features  of  the  WR  switch  or
proposing new approaches.

Resilient Data Delivery
The  principal  source  of  network  traffic  in  the  GMT
network is the DM. The DM broadcasts CMs from the top
of the network to all FeCs. It is critical for the control of
the accelerator  complex resilient  deliver  of  CMs to the
FeCs over the GMT. Single point of failures (SPOF) in
the network or bit errors in the Ethernet frames may be
the cause of unsuccessful delivery of data. 

The  GMT  network  overcomes  SPOFs  deploying
redundant  components:  WR switches  and  links.  As  the
Fig. 1 shows, the tree topology of the GMT network can
overcome SPOFs thanks to the redundant links between
the WR Switches. Unfortunately, this strategy, redundant
links, creates undesired logical loops in the network. 

A  family  of  network  protocols,  the  Spanning  Tree
Protocols,  could  be  used  to  create  spanning  tree
topologies.  These  protocols  disable  those  links  that
doesn’t belong to the spanning tree. In the event of link
failure, SPOF, the protocol reconfigures the spanning tree
and enables the redundant link to solve the SPOF. During
the  reconfiguration,  Ethernet  frames  may  get  lost  and
won’t be delivered. An Enhanced versions of  Spanning
Tree  Protocol  [6],  supporting  seamless  redundancy,  has
been proposed and tested in the White Rabbit community.

We  propose  an  alternative  to  the  Spanning  Tree
Protocols,  the  Link  Aggregation  Protocol  (LAG)  [7].
LAG provides methods to combine multiple links of  a
network  to  form a  single  link.  This  approach  provides
redundancy  in  the  network  without  loops  and
reconfiguration of the topology. The links compressed in a
LAG are always active. In the event of SPOF, the LAG
engine is notified and will forward the frames only to the
active  links.  A set  of  rules  defined  by the  users  in  the
LAG  engine,  determine  the  output  link,  among  the
aggregate links, for every incoming frame.

Ethernet  frames  travel  over  a  noise  and  imperfect
channel, the  Ethernet network. Bits of the frame may be
altered in the channel  for  different  reasons,  resulting in
flawed or lost frames. The loss rate of CMs required by
the GTM is 1 CM per year, 3.17 10-12,, expressed in terms
of  failure  rate.   The global  bit  error  rate  (BER) of  the
GTM network is 4.10−11, 3.17 10-10 in terms of frame error
rate (FER) [8].  The GTM BER and FER are calculated
taking  into  account:  logical  topology  of  the  network,
number of FeCs, BER of cabling and traffic bandwidth.

The loss rate of frames in the GMT network is ten times
bigger than the   specified.  Classical  network protocols,
like  TCP,  achieve  resilient   and  reliable  data  delivery
retransmitting the missing frames. Unfortunately, we can’t
rely  on  retransmission  since  the  delivery  of  the  CMs
won’t  be  anymore  within  the  specified  upper-bound
latency. An alternative technique to retransmission, is the
Forward Error Correction (FEC). This technique consists
in sending, from the DM, the original CMs and redundant
data  generated  by  a  coding  algorithm.  This  redundant
information allows the FeCs to detect and correct a limit
number  of  bit  errors  in  the  frame  using  a  decoding
algorithm.

The Fig. 2 shows a FEC scheme capable of overcoming
the loss of packets in the network and fix bit error in the
Ethernet frames. The encoding is done in two steps. First,
the  CMs  are  encoded  using  the  linear  error  correcting
called  LDPC [9].  The LDPC code generates  redundant
data using the original CM. The DM sends the original
CM along with the redundant information encapsulated in
N frames. The LDPC  are able to retrieve the  original CM
if at least M out N frames are delivered. The selection of
N and M depends on the use case and it has to be carefully
calculated. In the second step, the LDPC encoded frames,
in turn, are encoded using the Golay Code [10]. This code
is  able  to  detect  bit  errors  in  the  Ethernet  frames  and
repair up 3-bit errors.

Figure 2: GTM forward error correction scheme.

In conclusion, the LDPC provide resilience against  loss
of  frames  in  the  network  and  the  Golay  Code  repairs
flawed frames.  For the FAIR GMT we propose a LDPD
with N=3 and   M=2.

As  we  have  stated  before,  the  LAG  is  a  suitable
protocol for seamless redundancy in the event of a SPOF.
Yet the LAG can not avoid losses of CMs if a network
device fails (e.g. fibre optic) and CMs were in transit. The
LAG uses a set of rules, defined by the users, to forward
the frames among the aggregated links. These rules can
be  defined  in  such  a  way  that  the  LAG  forwards  the
encoded frames in specific links creating a multipath. The
encoded  frames  reach  the  very  same  FECs  following
different  paths.  The  Figure  1  illustrates  the  multipath
strategy. The dashed lines represent a LAG groups, two
links  per  WR  switch.  The  half  of  the  encoded  frames
follows a complete different path as the other half of the
frames.  If the LDPC encoder is capable of retrieving the
original  CM receiving two out four encoded frames, this
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scheme  overcomes  SPOF  in  the  network  without  loss
frames or CMs. 

Deterministic Data Delivery
The  GMT  network  requires  data  delivery  of  CMs

within 500 µs upper bound  latency so as to guarantee the
reaction  of  the  GMT  within  10  ms  to   interlock  and
external signals. 

The latency of  of Ethernet network has a constant and
variable component. The latency of the frames throughout
the network links (fibre optics or copper) is constant, with
a  negligible  jitter.  On  the  contrary,  the  switches  in  a
network introduce a variable latency during the switching
procedure  of  the  Ethernet  frames.  The  latency  of  the
switches  depends  on  the  design  of  the  switch  and  the
amount of traffic  in transit. The WR switches has been
carefully  designed   to  achieve  low  latency  switching
adopting  a  cut-through  architecture:  WR  switches  start
forwarding a Ethernet  frame to the destination port/s as
soon as the frame arrives,  even before the whole frame
has been received. A dedicated module in the WR switch,
RTU Forwarding Engine, decides based on the destination
MAC  address,  to  which  port/s  a  frame  has  to  be
forwarded [6]. 

As we have pointed out already, the amount of frames
in transit in an Ethernet switch influences the latency. In
this regard, the Ethernet standardization group introduced
to  the  protocol  a  useful  scheme to  bound  the  network
latencies, quality-of-service (QoS) [11]. The QoS defines
eight levels of service expressed in a special 3-bit field of
the  Ethernet  header  frame.   The  switch  prioritizes  the
forwarding  of  the  frames  according  to  the  QoS in  this
field.  If  the  switch  can’t  forward  intermediately  the
incoming  frames,  it  stores  the  frames  in  QoS  queues
according to its level of service.

In GMT, the CM frames from the DM are tagged with
the highest QoS, 7th, so as to achieve the lowest latency
possible.  In  FAIR,  the  DM  is  not  the  only  source  of
network traffic in the WR network. Other subsystems of
the accelerator like the Bunch to Bucket Transfer System
(B2B) [12] or the Machine Protection System (MPS) [13],
will probably make use of the  GMT network to  control
their equipment. The last source of network traffic is the
Management  Server,  responsible  of  the  network
management protocols like DHCP, SNMP, LLDP etc…

The  B2B  triggers  the  beam  extraction  and  injection
between  synchrotrons  at  GSI.  The  B2B  issues  a
handshake of frames between two special FeCs, the B2B
Source and B2B Target. The MPS is responsible for the
protection  of  the  accelerator  machines  and  safety  of
personnel. The MPS for FAIR is  not fully specified yet.
According to the last specifications,  a selected group of
FeCs in the network send, at regulars intervals, Ethernet
frames to a specific FeC, MPS, as a heartbeat signal. The
Table 2 and Table 3 summarize the traffic and the data
source in the GTM.

The WR switch implements  methods,  along with the
QoS, to guarantee that CMs are forwarded in within an
upper-bond  latency.  The  forwarding  engine  of  the  WR
switch introduces constant latencies for CMs with priory
7th and  broadcast  destination  MAC address.  On  top  of
that,  the  WR  switch  implements  a  strict  priority  (SP)
queue  algorithm  to  schedule  the  forwarding  of  frames
from the QoS queues. The WR switch dispatch first CM
frames  from  the  7th QoS,  as  long  as  the  queue  is  not
empty.  Then  the  frames  in  lower  QoS  queues  are
scheduled to be forwarded.  This scheme guarantees  the
deterministic delivery of CMs in the GTM with an upper-
bond latency of 500  µs in a network with 5 layers of
switches [14]. 

Table 2: GTM WR Network Traffic and Priorities

Application
Traffic

Bandwith
Prio VLAN ID

DM Broadcast 100 Mbit/s 7 100

DM Unicast 10 Mbit/s 7 100

B2B 25 kbit/s 6 100, 200

MPS 900kbit/s 5 100, 300

Mgmt Traffic ~10 Mbit/s 4-0 400

The  B2B  and  MPS  network  traffic  require  also
upper-bond latency. In order to measure the latency for
the traffic of these two systems, we have intensively
tested  the  WR Switch.  The  test  set-up simulates  the
FAIR use case in terms of layer of switches and traffic
in the GTM network. The Table 2 and Table 3 specifies
the bandwidth, VLAN Id and  upper bond latency of
every traffic. The tests [14] were carried out with the
Xena Traffic [15] generator and we have followed the
testing  methodology  for  GbE  switches,  RFC   2889
[16]. The results show latencies beyond the specified
requirements for the B2B and MPS, Tabe 3. There are
peaks  of  latency  going  beyond the  upper-bound and
even, at  times,  loss of  frames,  presumably by queue
overrun. The SP queue algorithm, in the case of B2B
MPS traffic, doesn’t fulfil the requirements. We are in
the  process  of  simulating  and  testing   alternative
queue algorithms like Priority-Based Deficit Weighted
Round Robin.

Table 3: GTM WR Network Traffic Bandwidth

Application
Max Latency/

Layer of Switches
Payload 

DM ≤500 us / ≤ 5 200-500 bytes

B2B ≤10 ms / 3 – 5 100 bytes

MPS ≤ 1ms / 3 64 bytes

Mgmt Traffic Best effort 64 – 1518 bytes
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Reliable Timing Delivery
WR extends the protocol IEEE 1588 [17], for achieving

sub-nanosecond synchronization with picoseconds  jitter.
WR  characterizes  the  asymmetries  of  the  link  and
measures  the phase shift  between the master  and slave
clocks  [18].  The  continuous  synchronization  of  all  the
FeCs during operation is critical for the control of FAIR
and GSI accelerators. The GTM production network [19],
made of  8  WR switches and 20 FeCs, exhibits high level
of reliability. More than three months in operation and no
degradation or lost of synchronization has been detected. 

The protocol IEEE 1588 supports different topologies
of  redundant  networks,  although  the  quality   of  the
synchronization  can  be  affected  during  the
reconfiguration of the network in the event of SPOFs. The
GTM  requires  continuous  phase  alignment  and
synchronization of all the FeCs without lost of quality. In
the Phd thesis [6], the author studies and characterize the
problem  and  proposes  a  scheme  for  seamless
reconfiguration  in  redundant  WR  network  preserving
subns accuracy of synchronisation.  

MONITORING AND LOGGING  THE
GENERAL TIMING MACHINE

The stated requirements of the FAIR CTS  are not only
achieved implementing protocols and network techniques,
but also supervising the performance of the system during
operation.  Monitoring  and  logging  systems provide  the
means  to  Timing Network  Managers  (TNM)  to  detect,
diagnose  and  prevent  failures  and  malfunctions  of  the
system on real-time and analyse the performance of the
system offline.

The performance of the system is evaluated using the
status information of the GTM network and its evolution
and  changes.  This  information  can  be  classify  in  two
levels: events and alarms. The events represent changes in
the  status  of  devices  of  the  GTM  network  (e.g.  FeC
synchronized)  or  change of the status of network peers
(e.g. new PTP Clock Master). Alarms are triggered when
the devices reach specific status (e.g. Whiter Rabbit port
down).

In  a  distributed  system  like  the  timing  network,  the
monitoring and logging information are generated in the
components and is propagated passively or actively to a
central point creating a global status of the GTM network.

Architecture
The  Figure  3  describes  the  architecture  of  the

Monitoring and Logging System at  GSI.  The source of
status information are the FeCs and WR Switches.  The
Monitoring and Logging Server (MLS) gathers the status
of  the  network  and  with  the  help  of  the  frameworks
Icinga[20]  and LogStash[21].  A secondary  network,  the
Management  network,  interconnects  the  management
interfaces  of  all  devices  and  transports  the  monitoring

information.  The  WR  Network,  besides  timing  and
control events, transports logging information and alarms.
Finally,  a  set  of  protocols:  SNMP,  Etherbone  [23]  and
Syslog,  stablish  the  communication  and  transport  the
information from the devices to the MLS.

Monitoring
A monitoring systems basically observe and checks the

state of a system and notifies events.  The system at FAIR,
uses the Icinga Framework to gather, display and digest
the  monitoring  information.  The  Icinga  framework  is
programmed to issue periodically SNMP requests to read
out the information from the WR Switches. In the case of
the FeCs, the host CPU reads out the status of the WR
Nodes  over  the  host  bus.  All  this  information  is  sent
periodically  from  the  CPU  to  the  Icinga  server  using
NSCA Passive  Check  Daemon  [22].  At  GSI,  we  have
chosen  this  strategy  over  other  alternatives  because  we
want to keep the monitoring network traffic out of GTM
Network. The GTM network will interconnect up to 2.000
FeCs.  The  simultaneous  generation  of  monitoring
information   upstream,  from  these  FeCs  to  the  MLS,
could bring about severe network congestion. The TNM
can  configure  Icinga  to  display  this  information  in
different  levels  and  create  alarms  if  a  status  of  the
network reaches of a defined value.

Logging
A logging system records the events and status of the

timing network. This information can be used either for
triggering  real-time  alarms  or  off-line  analysis  of  the
information.  Both  devices,  WR  switches  and  FeCs,
generate  logging  information  from  the  OS  of  the  host
system and transmitted  over  the  Management  Network.
Alternatively, the WR TR generates only  events related
to WR and are sent over GTM network,  the amount of
logging  traffic  is  almost  negligible.  GSI  uses  the
framework LogStash [21] to collect, parse and transform
the log information. 

Figure 3: Monitoring and logging architecture.
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System-wide Firmware Watchdog
In the GTM network the  maintenance and support of

the WR Switches and FeCs is distributed among the TNM
and the users, respectively. Both parties try their best  to
maintain  their  systems  up-to-date  with  specific
compatible  versions  of  the  firmware.  Otherwise,  the
timing and data distribution can not be guarantee. During
the last years, at GSI, we have faced several updates of
the GTM and we have learnt a lesson. We can’t guarantee
that all the components of GTM network are up-to-date.
There  were  always  situations  where  some  of  FeCs
couldn’t be reached and updated during the maintenance
period.  In  order  to  improve  the  update  procedure  and
guarantee that all the FeCs in the WR network are up-to-
date,  we  have  implemented  a  system-wide  firmware
watchdog  to  verify  that  all  the  FeCs  are  running
compatible  firmware.  Using  the  architecture  and
infrastructure of the Monitoring and Logging System, we
have developed an application that verifies the firmware
version of the the FeCs connected to the timing network.
If  the  version  of  the  firmware  is  not  compatible,  the
firmware watchdog disables the port of the WR Switch
where the FeCs is connected to. By doing this, we prevent
potential operations problems of the FeCs and in the WR
network.  In  addition,  the  application  communicates  the
user the event and instruct him to update the firmware.
The status and actions of the firmware watchdog is logged
in the MLS.

DEVELOPMENT AND CONTINUOUS
INTEGRATION OF THE GENERAL

TIMING MACHINE
The GTM  is a highly complex development made up of a
large  number  of  sub-components,  protocols  and
technologies.  As  example,  the  Fig.  4  shows  the
architecture and some sub-components of a FeC. The sub-
components of the FeCs are being developed by different
groups  at  GSI,  collaborations  with  other  institutes  and
Open  Software  communities.  The  majority  of  these
developments are still in constant evolution and change.
New releases come to life asynchronously fixing bugs and
providing  new required  features  to  the  system.  On  the
other  hand,  new  releases  of  the  sub-components  may
introduce  new  bugs  or  blunders.  In  addition,
collaborative  shared  developments  are  really  beneficial,
but  may  be  difficult  to  modify  and  upgrade  without
breaking  other  functionality.  A  small  and  harmless
change, done by one developer in one isolate component
of the system,  may expose  or bring about performance
problems or failures in other parts of the system. 

Figure 4: FeCs architecture and sub-components.

The  constant  and  mingled  evolution  of  the
developments,  along  with  the  high  complexity  of  the
FeCs,  makes  the  integration  of  the  sub-components  a
challenging  and  at  times,  frustrating  task.  The  time
invested  in  debugging  and  fixing  new  corner  cases
increases considerably. On top of that, the FeCs, at GSI,
are made up of FPGA-based hardware in different form-
factors,  with  specific  firmware  and  drivers,  which
multiplies the amount of components to update, test and
integrate.  Classical  development  flows  are  useful  in
situations where the development  of  sub-components  is
stable and the requirements and functionalities are clearly
defined. As we stated above,  this is  not the case in the
development of the CTS and FeCs. In order to delivery a
reliable system under these circumstances and reduce the
testing  and  debugging  effort,  we  have  adopted  a
development flow known continuous integration (CI).

The Figure 5 depicts how we have integrated, at GSI,
along with our classical development flow, a CI, where
the updates of the sub-components are automatically built,
deployed  and  tested  without  the  intervention  of  the
developers.  The  architecture  and  benefits  of  our  CI
system are detailed below.

Continuous Integration System Architecture 
Our continuous integration system is made of two sub-

systems. The building server, and a testing environment.

Figure 5: Continuous integration flow.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA091

Timing and Synchronization
TUPHA091

631

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



In the building server  we have set  up a development
environment with all the tools and compilers required for
the  building.  We  use  the  popular  Jenkies  [24]  to
automatically download  and build the code of the timing
firmware stack. The code of the timing firmware stack is
stored and managed in a Git repository, Bel Projects [25].
The timing firmware is a complex stack of  VHDL code,
kernel  modules  and  user  spaces  tools.  We  use  a
hierarchical  structure  of  makefiles  to  steer the  building
process and resolve dependencies among the projects. 

Jenkins starts and logs, every night, the building of the
stack,  and  notify  per  email  the  developers  in  case  of
failures. After building, Jenkins initiate the deployment of
firmware  on the testing environment,  which recreates  a
minimal  timing  network.  Once  the  deployment  of  the
timing  firmware  has  concluded  successfully  (otherwise
Jenkins  will  notify  the  developers)  the  tests  start
automatically.  We  have  achieve  a  moderate  level  of
automation in the interpretation of the test’s results. The
most remarkable is the notification, to the developers, of
the degradation of the synchronization during the tests.

CONCLUSION
Thanks  to  the  WR  techonology  the  GTM  at  GSI

deliveries CMs well below the GSI’s latency requirement
and synchronizes steadily a mid-size production network.
Yet there are still open issues regarding the reliability of
the  systems:  data  and  timing  delivery  in  the  event  of
SPOF,  resiliant  transmission  of  data  and  scheduling  of
non-CMs frames. As we have presented, there are already
solid technical proposal to improve the in-built reliability
of the GTM. 

In addition to the in-built reliability, the monitoring and
logging of the GTM is critical for the reliability of system
in  production.  Finally,  we  recomend  to  use  continous
integration practics to reduce the time of integration and
testing  of  complex  system  like  GTM.  Our  continous
integration system helps us to maintain thet quality and
reliablity of the system under development.  

We would like to ackondlege and thank the great work
done by the WR community, the Experimental Electronics
and Beam Diagnostic departments at GSI.
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