
THE FRIB RUN PERMIT SYSTEM*

D. Chabot
†
, M. Ikegami, M. G. Konrad, D. Maxwell

Facility for Rare Isotope Beams, Michigan State University, MI 48824, USA

Abstract
The Facility for Rare Isotope Beams (FRIB) will accel-

erate many different ion species and charge states defin-

ing a wide spectrum of operating modes and parameters.

The role of the Run Permit System (RPS) here is to exam-

ine if a requested state is suitable for the production of

beam. The decision to permit beam is based on input from

configuration management databases, machine and per-

sonnel protection systems, and beam characteristics and

destination. From this information an appropriate set of

operating parameters are deployed to hardware to support

the requested mode. This paper will describe the interfac-

es, implementation, and behavior of the RPS at FRIB.

INTRODUCTION

The Facility for Rare Isotope Beams, currently under

initial commissioning, will be capable of accelerating

heavy ions up to a beam power of 400 kW [1]. Capable of

accelerating a wide variety of ion species at variable

beam energies, machine protection risks are of significant

concern. In one of several parallel efforts to address these

risks, a Run Permit System is under development and

testing, which operates in concert with Personnel Protec-

tion System (PPS), Machine Protection System (MPS),

and the Global Timing System (GTS).

The FRIB Run Permit System software performs sever-

al functions, acting over a set of Critical Signals defined

here as the set of control system channels that the RPS

writes or subscribes to in order to affect beam production:

• Determines if conditions are such that beam pro-

duction may commence

o Configuration management systems in-

dicates approval of hardware for use

o Critical Signal thresholds are distribut-

ed (eg: power supply operating ranges)

o The absence of PPS, MPS, and Critical

Signal alarms or faults

• Indicates to dependent systems that beam pro-

duction may commence or continue by issuance

of the Run Permit signal

• Determines if conditions are such that beam op-

erations may continue in concert with PPS and

MPS mechanisms - failure of Critical Signals re-

voke the Run Permit

• Prevents modifications to Critical Signals during

beam operations

RPS COMPONENTS

Technologies

The control system software of FRIB is imple-

mented using the EPICS toolkit, CS Studio is utilized

to construct graphical user interfaces, and the RPS it-

self is a Python application relying on pyepics,

pcaspy, pymongo, and transitions [2-7]. The database

backend of the system uses MongoDB [8].

Machine and Beam Modes

Two of the more important concepts employed by

the RPS are the notions of Machine Modes and Beam

Modes. Machine Modes are hosted by the PPS and

define the geographic scope of permissible beam

propagation. Beam Modes are properties hosted by

the Run Permit System and define the permissible

range of beam power or energy, timing structure, and

ramping strategies. Table 1 and Table 2 itemize sam-

ples of both.

Table 1: Machine Mode samples

ID Description Beam Modes

M0 Maintenance B0

M1 Beam delivery up to linac B0, B8

M4 Beam delivery up to ex-

perimental systems

B0, B1, B2, B5

Table 2: Beam Mode samples

ID Time Structure/Power Scope

B0 No Beam Entire Machine

B1 CW/10-400 kW Entire Machine

B8 Variable/2-650 eµA Front End

Machine Mode, Beam Mode, ion species, and

charge state together form a state-set, which is uti-

lized by the RPS to query a database for the list of

control system process variables (PV) and values cu-

rated for that state. Armed with this list, the RPS may

then distribute the values to the hardware in prepara-

tion for beam delivery.

 __

* Work supported by the U.S. Department of Energy Office of Science

under Cooperative Agreement DE-SC0000661
† chabot@frib.msu.edu

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA098

TUPHA098
646

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Functional Safety and Machine Protection

Finite State Machine Model

The RPS models accelerator operations as a finite

set of states. A diagram for this finite state machine

(FSM) is shown below [Fig. 1], along with the events

causing transitions between states. This design choice

provides a simple, robust model with deterministic

source and destination states, user and control sys-

tem-based event triggers, and conditionally guarded

transitions. The FSM is implemented using the tran-

sitions library [7].

Figure 1: FSM model of the RPS.

The nature of each state in this model is explained

in more detail below:

• Stopped: this is the idle state, where the RPS is

not actively managing or monitoring. Beam may

be present up to the first Faraday cup following

the ion sources.

• Standby: while the system is in the Standby

state, beam may present up to and including the

Chopper.

A request to change the Machine State from Stopped to

Standby is affected by operator access via the RPS' Chan-

nel Access interface. This is the Enable transition. If no

fault conditions are present, the RPS will then collect the

process variable values for Machine and Beam Mode, ion

species, and charge state. If fault conditions are present,

no transition will occur.

Using the collected state-set to query the RPS database,

a set of values, ranges, and masks are returned and dis-

tributed to the Critical Signals. At the conclusion of a

successful distribution, the RPS will complete the transi-

tion to the Standby state, and enable the Run Permit con-

trol system signal.

It is the Run Permit EPICS variable that systems exter-

nal to the RPS must observe to govern their own behav-

iour. The transition of this variable between DISABLED

and ENABLED controls the deactivation or activation of

the following Channel Access Security rules:

• RPS Threshold: EPICS Records with this Ac-

cess Security Group (ASG) will prohibit writes

to metadata fields (DRVH, DRVL) while the

Run Permit is ENABLED.

• RPS Lock: EPICS Records with this ASG will

prohibit writes to their VAL fields while the Run

Permit is ENABLED.

• Ramping: A Start transition is affected at operator

command via the Channel Access interface. The GTS

is then configured by the RPS to support the chosen

Beam Mode and the GTS outputs are enabled.

• Running: The Run transition is affected when the

GTS indicates its ramping sequence has concluded,

and the RPS enters the Running state. If single-shot

mode is in effect, the RPS will automatically transi-

tion back to the Standby mode in preparation for the

next shot. If the chosen Beam Mode features contin-

uous delivery, the system will remain in the Running

state until instructed to issue a Stop transition (via the

CA interface), or a Fault transition has been trig-

gered.

• Faulted: Faults are indicated by changes to the EP-

ICS Status and/or Severity of Critical Signals man-

aged by the RPS. From the Standby, Ramping, or

Running states, any indication of abnormal condi-

tions will cause a transition to the Faulted state.

Exiting from the Faulted state depends on having all

fault conditions cleared. When that condition is satisfied,

the RPS will transition to the Stopped state, and must be

Enabled again to resume operations.

If the RPS detects a fault condition that is not a part of

the set monitored by MPS or PPS, it will signal the FPS

to dump the beam and issue a Fault transition (provided

the RPS is in the Standby, Ramping, or Running states. If

a fault condition is detected by the MPS or PPS systems

prior to detection by the RPS, then those systems are

responsible for initiating mitigating action and signalling

the RPS to make a Fault transition.

Database

Stateful information is persisted in a backing store.

Here, that store is MongoDB, a non-relational database.

The primary purpose of this database is to store Critical

Signals and their values as a function of accelerator state.

That is, Critical Signals and their values may be queried

according to the Beam Mode, ion species, charge state, or

time.

There are two clients of this backing store: machine op-

erators and the RPS software itself. Operators may create,

retrieve, update, or delete from the set of Critical Signals

for a given set of search keys. The interface for these

user-facing operations is a tabular Control System Studio

graphical interface. The RPS software client then simply

retrieves the Critical Signals names and values for a given

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA098

Functional Safety and Machine Protection
TUPHA098

647

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

machine state, and distributes those values to the corre-

sponding Process Variables.

The CS Studio interface is a two-column table, similar

to a spreadsheet. This table is backed by two small Py-

thon scripts, one to populate the table following a Read

command, and another to serialize and transfer the table

contents following a Write command. This command

structure helps enforce transaction atomicity. See Fig. 2:

Figure 2: RPS user interface panel

The interface between the user-facing table and the

MongoDB backend is an EPICS waveform PV, with

communication naturally being Channel Access between

the user interface and the RPS server hosting the wave-

form. A critical constraint imposed by this arrangement is

that EPICS waveform data-types must be homogeneous.

Practically, this is addressed by enforcing PV names and

values to be ASCII-encoded strings and configuring the

waveform to be of type CHAR.

Further formatting is imposed on the PV name/value

strings in that they are formatted as a JSON object. This

common format was chosen to minimize any conversion

that may be required between the RPS and the MongoDB

backend. In other words, JSON is a natural format for

objects stored in and transferred to/from the backend.

MongoDB naturally stores Document objects, and these

map well to Python dictionaries (associative arrays). This

means that, ideally, one could store PV name/values as

simple Python dictionary as well.

However, PV names often contain a '.' character to de-

limit EPICS Record Fields. MongoDB does not permit '.'

characters in Document keys as that is a reserved syntac-

tical element. As a workaround for this constraint, the

JSON object representing all persisted Critical Signals for

a given state set is simply a string. One drawback of this

scheme is that searching by Critical Signals may be

somewhat complicated, as the search must be performed

not over database keys, but on their values. However, at

this time such a search capability is not required.

STATUS AND SUMMARY

Development of the RPS software library is on going,

with testing sequestered from the production network and

devices for the time being. Full testing is expected to

begin near the end of October 2017, with the initial scope

limited to the Front End up to and include the Medium

Energy Beam Transport section just prior to the super-

conducting linac sections.

Integration with MongoDB backend continues to be

developed to expose more functionality. This includes

searching for Critical Signal sets based on a range of

dates, observing differences between selected state-sets,

and editing values. Additionally, it is also desired to inte-

grate RPS logging with the digital operations logbook.

This automation will permit recording of critical RPS

event entries in the official facility logs.

Given the potential impact and sensitivity of the Run

Permit System, a test suite is being developed to automate

the measurement of documented RPS requirements. This

will permit rapid turnaround of changes to the code base,

while still capturing regressions.

REFERENCES

[1] M. Ikegami et al, “Operation Mode and Machine State

Control For FRIB Driver Linac Operation”, in Proc. of Lin-

ear Accelerator Conf. (LINAC ’16), East Lansing, USA,

Sept. 2016, paper THPLR045, pp. 956-958.

[2] EPICS, http://www.aps.anl.gov/epics

[3] CS-Studio, http://controlsystemstudio.org

[4] Python, https://www.python.org

[5] pyepics, https://github.com/pyepics/pyepics

[6] pcaspy,
https://github.com/paulscherrerinstitute/pcas
py

[7] transitions,
https://github.com/pytransitions/transitions

[8] MongoDB, https://www.mongodb.com

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA098

TUPHA098
648

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Functional Safety and Machine Protection

