
NEW CERN PROTON SYNCHROTRON BEAM OPTIMIZATION TOOL
E. Piselli, A. Akroh

CERN, Geneva, Switzerland

Abstract
This paper describes a new software tool recently

developed at CERN called “New CPS Beam Optimizer”.
This application allows the automatic optimization of
beam properties using a statistical method, which has been
modified to suit the purpose. Tuning beams is laborious
and time-consuming, therefore, to gain operational
efficiency, this new method to perform an intelligent
automatic scan sequence has been implemented.

The application, written in JavaFX, uses CERN control
group standard libraries and is quite simple. The GUI is
user-friendly and allows operators to configure different
optimisation processes in a dynamic and easy way.

Different measurements, complemented by simulations,
have therefore been performed to try and understand the
response of the algorithm. These results are presented here,
along with the modifications still needed in the original
mathematical libraries.

INTRODUCTION
The accelerator complex at CERN is a succession of

machines that accelerate particles to increasingly higher
energies. Sequentially, each machine increases the energy
of a beam of particles, before injecting into the next one.
The CERN Proton Synchrotron (CPS) complex is the first
group of accelerators serving as injectors for the Large
Hadronic Collider (LHC). It comprises of one Linear
Accelerator (Linac2) and two different synchrotron rings,
the Proton Synchrotron Booster (PSB) and the Proton
Synchrotron (PS), as well as several beam transfer lines.

Beam tuning is the process where operators change
accelerator beam parameters in order to minimize or
maximize beam observables.

Unfortunately, irregular beamline designs together with
misalignment of the equipment challenge any simulation
to achieve the best results. Simulating in advance the final
accelerator tune is often very slow and not always efficient.
In addition, some devices like quadrupoles, correction
deflectors and kickers are very laborious to simulate with
high certainty.

Very often, during beams setting-up or machine
development, operators may have the challenge to find
optimum settings, especially when the phase space of
available parameters is large.

The problem of tuning different parameters versus one
or more detectors can be compared to a numerical analysis
optimization concept. In fact, in this field of mathematics,
optimization is devoted to the study of the theory and
methods to search the smallest or largest value of a
function:

min f or max f

where:
 f: → is the multivariable function
 X ⊆ is the set of possible solutions

When the problem is looking for minimum or maximum

of a function, most of the known algorithms are based on
the concept of the derivative and on the gradient
information. In general it is not always possible to have an
analytical expression of the function (which is abstract)
and, as a consequence, the derivatives cannot be calculated.
For this use cases one has to look into algorithms that use
some function samples in a defined set of points in order to
calculate different iterations. Direct-search methods are
used for both deterministic and stochastic applications and,
since they are effective techniques in deterministic
applications especially when derivatives are unavailable,
they have been targeted as primary choice for the
development of the tool.

These methods are generally robust with respect to small
perturbations in the function's values and therefore, are
used often in applications where noise is present, which is
often the situation faced in operations.

NELDER MEAD ALGORITHM
In the group of direct-search methods, the most popular

one is called Nelder-Mead algorithm [1].
The algorithm uses a regular simplex, which is a

polytope in n-dimensional space with 	 1 vertices, each
of which are connected to all other vertices (e.g. a triangle
in , a tetrahedron in , etc.).

In order to perform an optimization, the algorithm
begins with the function's values on a set of 1 points
in the parameter space of variables (simplex) and it
moves across the surface to be analysed in the direction of
steepest ascent (for maximization) or steepest descent (for
minimization) by replacing the worst vertex in the simplex
with its “mirror image” across the face formed by the
remaining vertices. The algorithm, while running, can
change in five different ways during an iteration, as
illustrated in Fig. 1 in two dimensions.

Figure 1: Nelder Mead iterations.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA120

TUPHA120
692

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Feedback Control and Process Tuning

An outline of the different steps rules for the Nelder-
Mead simplex algorithm for function minimization with n
parameters is as follows [1][2][3]:

1- Initialization. An initial simplex with +1 points is

chosen and the function is evaluated at each point. Rank
order is generated in ascending order of the function at
each point.
If f f ⋯ f the ordered set
is	 , , … , . We denote with 	this initial
simplex.

2- Simplex iteration. Considering this to be the iteration
k, the algorithm starts removing the worst point
f 	from 	and adding the new point
calculated reflecting as:

1 	

Where , called reflection coefficient, is normally
equal to 1 and 	is calculated from the remaining n
points of 	 as:

1

Then depending on the value of the function in
among the points in , one of the following
operation will be performed:

 Expansion: if f f , a new point is

calculated:

Where , called expansion coefficient, is usually
equal to 2.
From its estimation f we can have:

‐ if f f then replaces in
the simplex

‐ else replaces in the simplex

 Reflection: if f

	replaces

 Contraction: if f we can have 2

possible contractions:
‐ Outside contraction:

if f then calculate:

if then replace with
else go to the following point (shrink);

- Inside contraction:

if then calculate:

if then replace with
	, otherwise go to the following point

(shrink);

Where is the contraction coefficient usually

equal to .

- Shrink: all the points in the simplex are shrunk

towards by replacing each points as:

 		∀ ∈ 2, 1

Where is the shrinkage coefficient usually equal

to .

3- Next iteration or terminate. At this stage either a
new point has replaced through expansion,
reflection or contraction or a set of new points

, , … , have been calculated with a shrink.
The new set of points 	is reordered based on their
respective function values. If the stopping conditions
are satisfied the algorithm terminates, otherwise
another iteration is needed.

SOLUTION PROPOSED

Following preliminary investigation and studies done on
the Nelder Mead algorithm, the method is believed to
properly fit the needs of beam operations at CERN.

For this purpose the point (in , , … , is
replaced by a set of values of the beam parameters

, , , , … , , to be optimized and the function by
the beam observable:

, , , , … , ,

, , , , … , ,
…

, , , , … , ,

In order to fulfil our needs, some modifications with
respect to the original method have been adopted.

The first modification was to add constraints with upper
and lower bounds for all beam parameters	 , , (∀ 	 and
1). This is an essential condition due to:
- Hardware limits in the different devices imposed by

the power supplies’ working range.
- Software limits given by different possible

instabilities and safety problems that could lead to
beam losses.

The second modification adopted was to add specific
convergence criteria’s in order to avoid the possibility to
end up in a local minimum/maximum. For example, a way
of restarting the algorithm after a certain number of useless
attempts has been added.

The development of the tool is based on the java class
“NelderMeadSimplex” in the library Apache Commons
Math3. Before starting the GUI development application,
simulations have been made, successfully checking the

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA120

Feedback Control and Process Tuning
TUPHA120

693

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

behaviour of a routine implemented for the maximization
of a double Gaussian function in , see Fig.2 and Fig.3.

Figure 2: Simulation, initial iteration.

Figure 3: Simulation, last iteration.

SOFTWARE APPLICATION
The application program has been developed using

JavaFX toolkit. The flexibility and the easy use of this
programming language allowed the creation of a very
robust and reliable application, respecting a very simple
logic composed with a model, a view (GUI) part and a
controller part. An example is sketched in Fig. 4.

This logic allowed us to design a block diagram taking
into account all the specifications that we needed (Fig. 5).

Figure 4: Application logic.

Figure 5: Application GUI mock-up.

Figure 6 shows the GUI which is currently released and
in the Control Console Manager (CCM) of the PS Booster
and available for operations in the CERN Control Center
(CCC).

In the GUI one can identify different areas:

1- All the devices to scan have been grouped according
to their physical location in the machine. With these
two menus, it is possible to select different machine
zones and the devices to optimize.

2- Once the devices have been selected, these panels
show the actual values and acquisition data. For each
device it is possible to select either hardware or
software limits to be used during the scan.

3- In this part of the GUI it is possible to select which
beam observable to monitor. Most of the time it is a
Beam Current Transformer (BCT). It is even possible
to select two observables in order to perform the
optimization of ratio of beam observables.

Figure 6: Application GUI screenshot.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA120

TUPHA120
694

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Feedback Control and Process Tuning

4- This is the central part of the application. Here it is
possible to set the constraints for the algorithm:

 “Goal”: the value which one aims to reach in
order to stop the optimization.

 “Converge to”: once the “Goal” value is
reached by the optimization, the reading of the
beam observable(s) should be within a range
fixed around this value as percentage of the
goal value reached. In this case the process
stops and the optimization is finished
successfully.

 “Maximum Iterations”: the maximum number
of iterations of the algorithm before
converging. If this number is exceeded, the
optimization process finishes and the
application shows a failure message.

 Buttons: used to control the process. At any
time, even when the algorithm is still running,
one can stop the optimization either keeping
the last values or returning to the initial values.
It is also possible to send images and
optimization information to the eLogbook and
save all the devices’ values to the Injector
Control Architecture (InCA) database.

5- These two charts display the evolution of the
optimization process while scanning devices: the top
chart shows acquisition data from the selected devices
and the bottom one the acquisition data from the
selected observables (or their ratio).

MEASUREMENTS
During this year different campaigns of measurements

have been carried out in the PSB.
In the PSB, the horizontal and vertical tune of the

machine (and) – the number of betatronic oscillation
for one turn in horizontal and vertical planes - are defined
by the main quadrupoles. At low energy, when the proton
density is too high in a small space the particles reject
themselves. This effect is called “space-charge” [4].
Space-charge effect can alter the and 	of the
machine, inducting tune spread and leading to instabilities
or undesired blow-up of important beam parameters, such
as the transverse emittance. The smaller the emittance, the
higher the brightness of the beam. To compensate for these
effects, one has to balance the crossing of resonances with
proper multipole setting. The control of the tune is flexible
in the PSB and can be adapted for specific beam types
using additional and independent magnet trims called Q-
Strips. These will bring a small correction called ∆ and
∆ to the tune of the machine.

With the new optimization tool, several tests have been
performed using the Q-Strips, in order to maximize the
extracted intensity of specific beams.

Figure 7 shows a screenshot of the improvements of the
extracted beam from the first ring of the PSB followed after
tuning the Q-Strips. It is very interesting to see in Fig. 8

and Fig. 9 the detailed evolution of the tuned parameters
and of the beam observable during the iterations.

Figure 7: Q-Strips tuning

Using the tool, the beam performance could be increased
from 370E10ppp to 430E10ppp, which corresponds to
+16% in only 40 steps.

Figure 8: Beam observable evolution vs iterations.

Figure 9: Beam parameters tune evolution vs iterations.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA120

Feedback Control and Process Tuning
TUPHA120

695

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 10: Optimization of 4 devices starting with no
beam.

Another type of measurements to test more intensively

the robustness and efficiency of the algorithm was
performed too. In fact, in order to maximize the
transmission of the injected intensity in PSB from the
Linac2, it is always required to tune all the injection
horizontal and vertical deflectors. These deflectors are
used to optimize the angle and the position of the beam.
Fig. 10 shows a screenshot of the application at the end of
the optimization. To be noted that 4 devices were used at
the same time and that the process started from some
wrong values of these devices.
Even in this case, the algorithm has converged to an
optimum value after 46 iterations and changing drastically
the 4 devices values.

CONCLUSIONS AND PERSPECTIVES
A software tool has been developed targeting the

operation of the CPS complex at CERN. This application
allows the automatic optimization of beam properties using
a statistical method. Preliminary measurements with beam
in the PSB showed a fast response of the algorithm and all
the tests done, agreed with expectations. Although initial
measurements concur with expectations, there remains a
need to implement a minimization optimization
functionality and furthermore to improve the “fine tuning”
of the convergence parameters in order to increase the
speed of the optimization during machine operation.
From experience with this method, it is understood that the
beam tuning task could often be automated and that many
parameters could be auto tuned with results similar to an
experienced human operator.

The plan for the future is to have a general tool which
can be used across accelerators for the current and future
CERN operations.

ACKNOWLEDGMENT

We gratefully acknowledge the support of the PSB-PS
operators and section leaders and G. Kruk for his advice
during our Java code development.

Special thanks to G.P. Di Giovanni for his suggestions
and essential help during the measurements.

REFERENCES
[1] Margaret H. Wright, “Nelder, Mead, and the Other

Simplex Method”, Documenta Mathematica - Extra
Volume ISMP (2012) 271–276

[2] J. J. Tomick, “On Convergence of the Nelder-Mead
algorithm for unconstrained stochastic optimization”,

 PhD Thesis (1995)
[3] G. B. Dantzig, “Linear Programming and Extension”,

Princeton University Press (1963)
[4] K. Schindl. “Space Charge”, CAS (CERN Accelerator

School), Basic Course on General Accelerator Physics
(2000)

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA120

TUPHA120
696

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Feedback Control and Process Tuning

