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Abstract 
This paper describes a new software tool recently 

developed at CERN called “New CPS Beam Optimizer”. 
This application allows the automatic optimization of 
beam properties using a statistical method, which has been 
modified to suit the purpose.  Tuning beams is laborious 
and time-consuming, therefore, to gain operational 
efficiency, this new method to perform an intelligent 
automatic scan sequence has been implemented. 

The application, written in JavaFX, uses CERN control 
group standard libraries and is quite simple. The GUI is 
user-friendly and allows operators to configure different 
optimisation processes in a dynamic and easy way. 

Different measurements, complemented by simulations, 
have therefore been performed to try and understand the 
response of the algorithm. These results are presented here, 
along with the modifications still needed in the original 
mathematical libraries. 
 

INTRODUCTION 
The accelerator complex at CERN is a succession of 

machines that accelerate particles to increasingly higher 
energies. Sequentially, each machine increases the energy 
of a beam of particles, before injecting into the next one. 
The CERN Proton Synchrotron (CPS) complex is the first 
group of accelerators serving as injectors for the Large 
Hadronic Collider (LHC). It comprises of one Linear 
Accelerator (Linac2) and two different synchrotron rings, 
the Proton Synchrotron Booster (PSB) and the Proton 
Synchrotron (PS), as well as several beam transfer lines. 

Beam tuning is the process where operators change 
accelerator beam parameters in order to minimize or 
maximize beam observables. 

Unfortunately, irregular beamline designs together with 
misalignment of the equipment challenge any simulation 
to achieve the best results. Simulating in advance the final 
accelerator tune is often very slow and not always efficient. 
In addition, some devices like quadrupoles, correction 
deflectors and kickers are very laborious to simulate with 
high certainty. 

Very often, during beams setting-up or machine 
development, operators may have the challenge to find 
optimum settings, especially when the phase space of 
available parameters is large. 

The problem of tuning different parameters versus one 
or more detectors can be compared to a numerical analysis 
optimization concept. In fact, in this field of mathematics, 
optimization is devoted to the study of the theory and 
methods to search the smallest or largest value of a 
function: 

min f   or  max f  

where: 
 f: →   is the multivariable function 
 X ⊆  is the set of possible solutions 

 
When the problem is looking for minimum or maximum 

of a function, most of the known algorithms are based on 
the concept of the derivative and on the gradient 
information. In general it is not always possible to have an 
analytical expression of the function (which is abstract) 
and, as a consequence, the derivatives cannot be calculated. 
For this use cases one has to look into algorithms that use 
some function samples in a defined set of points in order to 
calculate different iterations. Direct-search methods are 
used for both deterministic and stochastic applications and, 
since they are effective techniques in deterministic 
applications especially when derivatives are unavailable, 
they have been targeted as primary choice for the 
development of the tool. 

These methods are generally robust with respect to small 
perturbations in the function's values and therefore, are 
used often in applications where noise is present, which is 
often the situation faced in operations. 
 

NELDER MEAD ALGORITHM 
In the group of direct-search methods, the most popular 

one is called Nelder-Mead algorithm [1]. 
The algorithm uses a regular simplex, which is a 

polytope in n-dimensional space with 	 1 vertices, each 
of which are connected to all other vertices (e.g. a triangle 
in , a tetrahedron in , etc.). 

In order to perform an optimization, the algorithm 
begins with the function's values on a set of 1 points 
in the parameter space of  variables (simplex) and it 
moves across the surface to be analysed in the direction of 
steepest ascent (for maximization) or steepest descent (for 
minimization) by replacing the worst vertex in the simplex 
with its “mirror image” across the face formed by the 
remaining vertices. The algorithm, while running, can 
change in five different ways during an iteration, as 
illustrated in Fig. 1 in two dimensions. 

 
 

Figure 1: Nelder Mead iterations. 
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An outline of the different steps rules for the Nelder- 
Mead simplex algorithm for function minimization with n 
parameters is as follows [1][2][3]: 
 
1- Initialization. An initial simplex with +1 points is 

chosen and the function is evaluated at each point. Rank 
order is generated in ascending order of the function at 
each point. 
If f f ⋯ f  the ordered set 
is	 , , … , . We denote with 	this initial 
simplex. 

2- Simplex iteration. Considering this to be the iteration 
k, the algorithm starts removing the worst point 
f 	from 	and adding the new point  
calculated reflecting  as:  
 

1 	  
  
Where , called reflection coefficient, is normally 
equal to 1 and 	is calculated from the remaining n 
points of 	 as: 
 

1
 

 
Then depending on the value of the function in  
among the points in , one of the following 
operation will be performed: 

 
 Expansion: if f f , a new point is 

calculated: 
 

 
 
Where , called expansion coefficient, is usually 
equal to 2. 
From its estimation f  we can have: 

‐ if f f  then  replaces  in 
the simplex 

‐ else  replaces  in the simplex 
 
 Reflection: if f  

	replaces  
 
 Contraction: if f  we can have 2 

possible contractions: 
‐ Outside contraction: 

if f   then calculate: 
 

if  then replace  with   
else go to the following point (shrink); 

 
- Inside contraction: 

if  then calculate: 
 

if  then replace  with  
	, otherwise go to the following point 

(shrink); 
 

Where  is the contraction coefficient usually 

equal to  . 

 
- Shrink: all the points in the simplex are shrunk 

towards  by replacing each points as: 
 

         		∀ ∈ 2, 1  
 
Where  is the shrinkage coefficient usually equal 

to  . 

3- Next iteration or terminate. At this stage either a 
new point has replaced  through expansion, 
reflection or contraction or a set of new points 

, , … ,  have been calculated with a shrink. 
The new set of points 	is reordered based on their 
respective function values. If the stopping conditions 
are satisfied the algorithm terminates, otherwise 
another iteration is needed. 

 
SOLUTION PROPOSED 

Following preliminary investigation and studies done on 
the Nelder Mead algorithm, the method is believed to 
properly fit the needs of beam operations at CERN. 

For this purpose the point  (in , , … ,  is 
replaced by a set of values of the  beam parameters 

, , , , … , ,  to be optimized and the function by 
the beam observable: 

 

, , , , … , ,  

, , , , … , ,  
… 

, , , , … , ,  
 

In order to fulfil our needs, some modifications with 
respect to the original method have been adopted. 

The first modification was to add constraints with upper 
and lower bounds for all beam parameters	 , , (∀ 	 and 
1 ). This is an essential condition due to: 
- Hardware limits in the different devices imposed by 

the power supplies’ working range. 
- Software limits given by different possible 

instabilities and safety problems that could lead to 
beam losses. 

The second modification adopted was to add specific 
convergence criteria’s in order to avoid the possibility to 
end up in a local minimum/maximum. For example, a way 
of restarting the algorithm after a certain number of useless 
attempts has been added. 

The development of the tool is based on the java class 
“NelderMeadSimplex” in the library Apache Commons 
Math3. Before starting the GUI development application, 
simulations have been made, successfully checking the 
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behaviour of a routine implemented for the maximization 
of a double Gaussian function in , see Fig.2 and Fig.3. 

 

 

Figure 2: Simulation, initial iteration. 
 

 

 

Figure 3: Simulation, last iteration. 
 
 

SOFTWARE APPLICATION 
The application program has been developed using 

JavaFX toolkit. The flexibility and the easy use of this 
programming language allowed the creation of a very 
robust and reliable application, respecting a very simple 
logic composed with a model, a view (GUI) part and a 
controller part. An example is sketched in Fig. 4. 

This logic allowed us to design a block diagram taking 
into account all the specifications that we needed (Fig. 5). 

 
Figure 4: Application logic. 

 
 

 
Figure 5: Application GUI mock-up. 

 
 

Figure 6 shows the GUI which is currently released and 
in the Control Console Manager (CCM) of the PS Booster 
and available for operations in the CERN Control Center 
(CCC). 

In the GUI one can identify different areas:  

1- All the devices to scan have been grouped according 
to their physical location in the machine. With these 
two menus, it is possible to select different machine 
zones and the devices to optimize. 

2- Once the devices have been selected, these panels 
show the actual values and acquisition data. For each 
device it is possible to select either hardware or 
software limits to be used during the scan. 

3- In this part of the GUI it is possible to select which 
beam observable to monitor. Most of the time it is a 
Beam Current Transformer (BCT). It is even possible 
to select two observables in order to perform the 
optimization of ratio of beam observables. 

 
 

 
Figure 6: Application GUI screenshot. 
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4- This is the central part of the application. Here it is 
possible to set the constraints for the algorithm: 

 “Goal”: the value which one aims to reach in 
order to stop the optimization. 

 “Converge to”: once the “Goal” value is 
reached by the optimization, the reading of the 
beam observable(s) should be within a range 
fixed around this value as percentage of the 
goal value reached. In this case the process 
stops and the optimization is finished 
successfully. 

 “Maximum Iterations”: the maximum number 
of iterations of the algorithm before 
converging. If this number is exceeded, the 
optimization process finishes and the 
application shows a failure message. 

 Buttons: used to control the process. At any 
time, even when the algorithm is still running, 
one can stop the optimization either keeping 
the last values or returning to the initial values. 
It is also possible to send images and 
optimization information to the eLogbook and 
save all the devices’ values to the Injector 
Control Architecture (InCA) database. 

5- These two charts display the evolution of the 
optimization process while scanning devices: the top 
chart shows acquisition data from the selected devices 
and the bottom one the acquisition data from the 
selected observables (or their ratio). 

 
 

MEASUREMENTS 
During this year different campaigns of measurements 

have been carried out in the PSB. 
In the PSB, the horizontal and vertical tune of the 

machine (  and ) – the number of betatronic oscillation 
for one turn in horizontal and vertical planes - are defined 
by the main quadrupoles. At low energy, when the proton 
density is too high in a small space the particles reject 
themselves. This effect is called “space-charge” [4]. 
Space-charge effect can alter the  and 	of the 
machine, inducting tune spread and leading to instabilities 
or undesired blow-up of important beam parameters, such 
as the transverse emittance. The smaller the emittance, the 
higher the brightness of the beam. To compensate for these 
effects, one has to balance the crossing of resonances with 
proper multipole setting. The control of the tune is flexible 
in the PSB and can be adapted for specific beam types 
using additional and independent magnet trims called Q-
Strips. These will bring a small correction called ∆ and 
∆ to the tune of the machine. 

With the new optimization tool, several tests have been 
performed using the Q-Strips, in order to maximize the 
extracted intensity of specific beams. 

Figure 7 shows a screenshot of the improvements of the 
extracted beam from the first ring of the PSB followed after 
tuning the Q-Strips. It is very interesting to see in Fig. 8 

and Fig. 9 the detailed evolution of the tuned parameters 
and of the beam observable during the iterations. 

 
Figure 7: Q-Strips tuning  

Using the tool, the beam performance could be increased 
from 370E10ppp to 430E10ppp, which corresponds to 
+16% in only 40 steps. 
 

 
Figure 8: Beam observable evolution vs iterations. 

 

 
Figure 9: Beam parameters tune evolution vs iterations. 
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Figure 10: Optimization of 4 devices starting with no 
beam. 

 
Another type of measurements to test more intensively 

the robustness and efficiency of the algorithm was 
performed too. In fact, in order to maximize the 
transmission of the injected intensity in PSB from the 
Linac2, it is always required to tune all the injection 
horizontal and vertical deflectors. These deflectors are 
used to optimize the angle and the position of the beam. 
Fig. 10 shows a screenshot of the application at the end of 
the optimization. To be noted that 4 devices were used at 
the same time and that the process started from some 
wrong values of these devices. 
Even in this case, the algorithm has converged to an 
optimum value after 46 iterations and changing drastically 
the 4 devices values.  
 
 

CONCLUSIONS AND PERSPECTIVES 
A software tool has been developed targeting the 

operation of the CPS complex at CERN. This application 
allows the automatic optimization of beam properties using 
a statistical method. Preliminary measurements with beam 
in the PSB showed a fast response of the algorithm and all 
the tests done, agreed with expectations. Although initial 
measurements concur with expectations, there remains a 
need to implement a minimization optimization 
functionality and furthermore to improve the “fine tuning” 
of the convergence parameters in order to increase the 
speed of the optimization during machine operation. 
From experience with this method, it is understood that the 
beam tuning task could often be automated and that many 
parameters could be auto tuned with results similar to an 
experienced human operator.  

The plan for the future is to have a general tool which 
can be used across accelerators for the current and future 
CERN operations. 

 
ACKNOWLEDGMENT 

We gratefully acknowledge the support of the PSB-PS 
operators and section leaders and G. Kruk for his advice 
during our Java code development. 

Special thanks to G.P. Di Giovanni for his suggestions 
and essential help during the measurements.  

 
 

REFERENCES 
[1] Margaret H. Wright, “Nelder, Mead, and the Other 

Simplex Method”, Documenta Mathematica - Extra 
Volume ISMP (2012) 271–276 

[2] J. J. Tomick, “On Convergence of the Nelder-Mead 
algorithm for unconstrained stochastic optimization”, 

 PhD Thesis (1995)  
[3]  G. B. Dantzig, “Linear Programming and Extension”, 

Princeton University Press (1963) 
[4]  K. Schindl. “Space Charge”, CAS (CERN Accelerator 

School), Basic Course on General Accelerator Physics 
(2000) 

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA120

TUPHA120
696

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Feedback Control and Process Tuning


