
ONLINE SIMULATION FRAMEWORK THROUGH HTTP SERVICES ∗

K.A. Brown†, M. Harvey, Y. Jing, P. Kankiya, S. Seletskiy,
Collider-Accelerator Department, BNL, Upton, NY, USA

Abstract
The development of HTTP service interfaces [1] to the

BNL Collider-Accelerator Department (C-AD) controls sys-
tem opens up the ability to more quickly and easily adapt
existing codes developed for other systems for use at RHIC.
A simple particle accelerator online model built for commis-
sioning the NSLS II [2] was adapted for use with the Low
Energy RHIC electron Cooling project (LEReC) [3] and
the Coherent Electron Cooling (CeC) [4] proof of principle
experiment. For this project, a set of Python modules and a
Python application were adapted for use in RHIC by replac-
ing NSLS II control system interfaces with Python modules
that interface to the C-AD controls HTTP services [5]. This
paper will discuss the new interfaces and the status of com-
missioning them for operations.

INTRODUCTION
Traditionally, sharing code from other facilities has been

a labor intensive process. Control systems from different
facilities have different communications interfaces, database
interfaces, and even the general, non-control systems tools
can greatly differ. To some level making control systems
open source projects, as has been done with EPICS [6] and
TANGO [7], makes this process easier. The C-AD controls
system Accelerator Device Object (ADO) model [8, 9] is
similar to TACO (the predecessor to TANGO) and over
twenty years of refinement has become a robust, reliable,
and very high performance system. Unfortunately, it is not
open source and so it can be challenging to adopt code from
other laboratories.
As much as these various control systems are different,

they are, in general, very much the same, following what
has long been known as the ’standard model’ for accelerator
controls [10,11]. In general, for all of these control systems,
the abstraction of a ’Device’ is a fundamental structure. The
details on how the parameters from a given Device are pub-
lished to the rest of the control system are different, but in
each system, if you know the name of a parameter, you can
get or set the value and properties of that parameter.

The C-AD controls system has recently adopted a REST-
ful set of communication protocols that allow applications
from many different platforms and operating systems to ac-
cess controls Devices. These HTTP server interfaces also
ease the task of adopting application level code from other
facilities and control systems. In this report, we will dis-
cuss the process of adopting a Python application built for
commissioning NSLS II for use in RHIC through the use of
HTTP server interfaces.
∗ Work performed under Contract Number DE-SC0012704 with the aus-
pices of the US Department of Energy.
† kbrown@bnl.gov

CONTROLS INTERFACE
The Device Server allows direct set and get communica-

tion to the ADO parameters while the Data Server provides
access to logged data. For more detailed descriptions of the
Controls interfaces see [1, 5]. The dataflow model for the
simulation framework using the RESTful interface is shown
in Fig. 1.

Figure 1: Data Flow and Interfaces for Simulation Frame-
work.

For the online simulation framework, the names of the de-
vices for a given model instance are listed in a model lattice
description file, which has a syntax similar to standard ac-
celerator physics model engines, such as madx or mad8 [12].
An example is shown in Fig. 9, in the appendix (ellipses
indicate more similar elements follow.) The general format
is element_name: element_type, parameters.
For this model lattice description to be connected to the

control system, the element_name simply needs to be the
ADO parameter name for that element.

LEREC & CEC
Both LEReC and CeC are electron accelerator systems,

with a significant level of complexity. Each has electron
guns with low energy sections and beam transport systems
composed of standard accelerator components, including
transport solenoids. Each is instrumented with current mon-
itors, beam position monitors, and various types of profile
monitors.
Figure 2 shows the layout of LEReC. The same electron

beam is used to cool beams in each of the two RHIC rings.
Since the ion beams in RHIC travel in opposite directions,
the electron beam first passes by the ion beam in the RHIC
Yellow ring and then is bent 180◦ and passes by the ion beam
in the RHIC Blue ring, and then dumped. For the model

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA135

TUPHA135
734

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Integrating Diverse Systems

Figure 2: LEReC Layout (not to scale).

Figure 3: CeC Layout.

description, just the standard magnetic elements are used
(drifts, bends, quads, solenoids, correctors, etc.), as well as
the BPMs. Everything else is either a marker or treated as
drift space.

Figure 3 shows the layout of CeC. Since this is an ex-
periment to test the principle of coherent electron cooling,
it is designed to only cool one bunch in one of the RHIC
rings, at a low energy. The first section of quadrupoles, just
after the ’dogleg’ is where the electron beam images the
ion bunch signal. The Free Electron Laser (FEL) amplifies
the signal and in the second quadrupole section the electron
beam applies a small kick to the ion bunch. For a more de-
tailed description of the physics see [4]. What is important
for this discussion is the model of the electron beams will
make use of the standard magnetic optical elements, but the
FEL will simply be seen as a drift. It is an extremely simple
model and does not model the CeC process. As with LEReC
it is meant just to describe basic optics conditions. More
refined/precise models are used in offline analysis.

LEREC & CEC ONLINE MODELS

The simulation framework software is based on a high-
level application used for NSLS II beam commissioning [2].
The idea behind this system is to use a fast, simple model to
roughly describe the conditions of the accelerator, to allow
the basic systems to be checked out and beam conditions to
be initially established.
The general idea behind the software was to combine in-

teractive simulations with measured beam positions into a
single tool. The NSLS II application was built in Python, us-
ing models and interfaces developed at NSLS II. To convert
the application over for use with LEReC involved discon-
necting the NSLS II dependancies from the software. This
meant replacing the controls interfaces used for NSLS II
with our own. Figure 1 shows the data flow and interfaces
for the new application.
For the new application, a new class was constructed,

apDeviceIo, to use the C-AD Device Server, using a REST
services protocol. Through this interface all controls data

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA135

Integrating Diverse Systems
TUPHA135

735

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

is acquired. This class effectively replaces all the NSLS II
controls calls, minimizing the changes needed to the origi-
nal Python scripts. The names, types, and strengths of the
accelerator devices are given in the lattice description file.
This file holds all the beamline specific information. Except
for this file, everything else is generic and highly modular.
So, for CeC and LEReC, the only change to run the given
simulation interface is to use a different lattice description
file. A command line switch, at run time, allows the user to
select what lattice description file to use.

import accphys3 as ap2
import a p _ l a t t i c e _ p a r s e r a s c l p3
import a p _ a u x i l i a r y as ca
import apDev i ce Io as d io

Figure 4: List of in-house modules built for the simulation
framework.

There were three other modules, outside of the main script,
that were imported for the NSLS II code. These modules, in
principle, didn’t need to change to adapt the code over the
C-AD controls system, but did need to be modified to meet
LEReC and CeC requirements.
In Fig. 4, the accphys3 module contains the model en-

gine components. The original implementation is basically
simple linear matrix operations for first order optics. For
LEReC and CeC, solenoids and skew quadrupoles needed
to be added. Also, since the electron beam energies are rela-
tively low, a simple space charge model was added. Except
for minor modifications (improvements), ap_lattice_parser
and ap_auxiliary remain the same as in the original code
base.

GUI Displays
The main application consists of 3 separate GUI displays,

a main menu window (Fig. 5), that allows selecting what
beamline(s) to display, a spreadsheet like display containing
some control buttons and the listing of the magnetic ele-
ments (Fig. 6), and a graphics display showing the model
and measured orbits, a simple graphical description of the
beamline elements, and a plot of the model beam sizes along
the beamline (Fig. 7).

Figure 5: LEReC main menu page.

Lattice Parser
The lattice parser module reads a lattice description file

and returns a Python dictionary containing the list of ele-
ments, a beamline dictionary if there are multiple beamlines

Figure 6: LEReC element listing page.

or if a single beamline is broken up into multiple lines, and
a Twiss dictionary, containing the current set of optics pa-
rameters calculated by the model. When the parser runs it
initializes all values based on the defaults given in the lattice
description file. These values are temporary and are never
used. Before bringing up the graphics display, the element
strengths and Twiss values are recalculated based on live
data.

Beamline Description
The ap_auxiliary module just structures the data for the

graphics display of the beamline, or the ’Lattice’ graph in
the middle of the graphics display (see Fig. 7).

The application holds beamline and optics data in Python
dictionary objects labeled consistently with the description
from the lattice file. This is convenient for addressing data
elements with labels.

Physics Model Processor
The accphys3 module contains the matrix operations for

calculating the optics parameters from the magnet strengths.
These operations assume the input parameters are in physics
units strengths (e.g., a bend angle in mrad). The controls
system power supply ADOs work in engineering units (e.g.,
current in Amps). So either the simulation framework has to
have transfer functions embedded in the Python code or an-
other manager layer must exist to get the magnet strengths in

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA135

TUPHA135
736

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Integrating Diverse Systems

Figure 7: LEReC graphics page.

the correct units. For both CeC and LEReC another magnet
manager layer exists as part of the controls system. This ap-
proach allows the strengths in physics units to be published
and available to any application and be accessed using the
HTTP device server interface.

MAGNET MANAGERS
The Magnet manager is a layer of abstraction between

low level power supply controls and hig-level user interfaces
which, for example, host the logic for the beamline model.
The beamline model tools communicate with this layer to
broadcast machine parameters such as beam energy. Power
supplies that control magnet currents are represented in the
controls systems as individual ADOs. The presence of the
magnet manager allows representing magnets in the control
system as ADOs and save magnet related properties in form
of an ADO parameter such as K1 values in case of quad
magnets. This also avails maintaining timed archives and
data logs of magnet properties in physics units. At a change
of energy in the beamline the magnet ADO converts physical
units to power supply current based on a transfer function
for each type of magnet. The transfer function is the rela-
tionship between beam energy, gamma, beam rigidity and
magnet current coefficients. These transfer functions are
provided by the system physicists. Magnet ADOs also store
the reverse conversion from live current to corresponding

rotation angles, bending angle, current gradient, and so forth,
depending on the element. This scheme helps in determining
the error between live and desired beam optics settings. The
Magnet manager is an independent piece of software and
has flexibility to take commands from any external tools. A
generic Magnet manager class structure is shown in Fig. 8.

Figure 8: Magnet manager class structure.

SUMMARY
The process of borrowing code from another facility and

built for another control system was very much simplified
through the use of REST services interfaces. The software
for the simulation framework is easily adaptable to multiple
applications, just by creating and referencing a new lattice
description file. As of the time of the writing of this paper,
the software has been demonstrated to work correctly but has
not been used for general operations. Both CeC and LEReC
will have significant beam operations next year, and the
online simulation environment will be tested and integrated
into normal operations.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA135

Integrating Diverse Systems
TUPHA135

737

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

APPENDIX

! l i s t i n g o f beam l i n e e l emen t s
!
! t h e s o l e l emen t s a r e s o l e n o i d s
l e c s1 −gun . s o l 1 : SOL , L=0 .06 , G=0 .
. . .
! c o r r e c t o r s
l e c s1 −gun . t h1 : hKick , L=0 . , k i c k =0 .
. . .
! Quads
l e c s1 − i n j . t q1 : QUAD, L=0 .05 , K1= 0 .
. . .
! Skew quads
l e c s1 − i n j . t q s 1 : SQUAD, L=0 .05 , K1=0 .
. . .
! Bend , 45 deg r e e d i p o l e
l e c s1 − i n j . d1 : CSBEND, L=0 .3089 , &

ANGLE= −0.7853981634 , &
E1=0 .0 , E2=0 .0

! d r i f t s
Cath_GCSol : DRIF , L= 0 .12
. . .
! Markers
Cathode_Face : Mark
. . .
LECS1_End : Mark
! mon i t o r s − t h e s e a r e bpm ’ s
l e c s1 − i n j . b0 : Moni
. . .
!===== Twiss p a r ame t e r s ===
TWISS_0disp : &

BETA0 , BETX = 9 .35591 , &
ALFX = 0 .663442 , &
BETY = 8 .63852 , &
ALFY = 0 .936493 , &
DX = 0 .148315 , DPX = 0 . 0

!====================
LEREC: LINE=(l e c s1 −gun . th1 , &

l e c s1 −gun . tv1 , &
. . .
LECS1_End)

USE : LEREC

Figure 9: Example lattice description for simulation frame-
work.

REFERENCES
[1] T. D’Ottavio et al., presented at ICALEPCS’17, Barcelona,

Spain, Oct. 2017, paper TUPHA157, this conference.
[2] S. Seletskiy et al., in Proc. IPAC’15, Richmond, VA, USA,

May 2015, pp. 1953-1955.
[3] A. Fedotov et al., in Proc. NAPAC’16, Chicago, IL, USA,

Oct. 2016, pp. 867-869.
[4] V.N. Litvinenko et al., inProc. IPAC’11, San Sebastian, Spain,

Sep. 2011, pp. 3442-3444.
[5] K. Brown et al., presented at ICALEPCS’17, Barcelona,

Spain, Oct. 2017, paper TUPHA153, this conference.
[6] EPICS, http://www.aps.anl.gov/epics/.
[7] TANGO, http://www.tango-controls.org/.
[8] J. Skelly and J. Morris, in Proc. ICALEPCS’99, Trieste, Italy,

Oct. 1999, pp. 42-24.
[9] L. Hoff and J. Skelly, in Proc. ICALEPCS’93, Berlin, Ger-

many, Oct. 1993, Nucl. Instr. and Meth. A, p. 185, 1993.
[10] B. Kuiper, in Proc. ICALEPCS 1991, p.602, KEK, Tsukuba,

JAPAN
[11] V.N. Alferov et al., in Proc. ICALEPCS 1991, p.134, KEK,

Tsukuba, JAPAN
[12] MAD, http://mad.web.cern.ch/mad/.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA135

TUPHA135
738

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Integrating Diverse Systems

