
INTERFACE BETWEEN EPICS AND ADO*

A. Sukhanov†, J. P. Jamilkowski, A. Marusic, BNL, Upton, NY 11973, USA

Abstract
EPICS is widely used software infrastructure to control

Particle Accelerators, its Channel Access (CA) network
protocol for communication with Input/Output
Controllers (IOCs) is easy to implement in hardware.
Many vendors provide CA support for their devices. The
control systems of the Collider-Accelerator Department
(C-AD) at Brookhaven National Laboratory (BNL) is a
complex system consisting of approximately 1.5 million
[1] control points. The control of all devices is unified
using an Accelerator Device Objects (ADO) software
abstraction layer. In this paper we present software
solutions for cross-communication between two different
platforms. They were implemented for the integration of a
NSLS II Power Supply Controller hardware into the
RHIC Controls System.

INTRODUCTION

EPICS Software Infrastructure
EPICS is used in more than 100 of independent

projects, number of controlled process variables (PVs)
ranges from 1K to 300K.

Figure 1: EPICS client-server model.

The key features of the EPICS infrastructure:
• Client-server model: device is controlled by an

Input/Output Control program (IOC), which provide
support for 'records'. Records provide access and
control to process variables.

• Client-server protocol: EPICS Channel Access
protocol (CA).

• Transport layer: TCPIP.
• Name server: No central name server.
• Number of lines in the Base Code: 200K of C code.
• Source availability: Open source.

RHIC Controls Infrastructure
The RHIC control system provides the operational

interface to the collider and injection beam lines. The
equipment under control includes more than 350 VME

crates, and hundreds of network-capable devices. The
control of all devices is unified using Accelerator Device
Objects (ADO) software abstraction layer

The key features of the RHIC Controls infrastructure:
• Client-server model: device is controlled by an ADO

Manager program, which hosts the process variables.
• Client-server protocol: RPC.
• Transport layer: TCPIP.
• Name server: CNS, an RPC-based server program,

connected to central Sybase database.
• Number of lines in the Base Code:

pure Python implementation: 5K,
(original C++ implementation: ~200K).

• Source availability: proprietary.

Figure 2: RHIC Controls client-server model.

CONTROL OF THE EPICS-MANAGED
DEVICE IN RHIC ENVIRONMENT

The server for an EPICS-managed device should
monitor and react on two sources of changes:

• monitor changes of the EPICS PVs (e.g using EPICS
API ca_pend_event() loop) and change the
corresponding ADO PV.

• monitor changes of the ADO PVs (e.g. using ADO
API HandleNextEvent() loop) and change the
corresponding EPICS PV.

The logically simplest approach is to build two separate
applications: epics2ado (based on camonitor from EPICS
API) and ado2epics (based on adoIf from ADO API) as
illustrated on Fig. 3.

Figure 3: Two-way translation between EPICS and ADO.

__

* Work supported by Brookhaven Science Associates, LLC under
Contract No. DE-SC0012704 with the U.S. Department of Energy.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA146

TUPHA146
748

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Integrating Diverse Systems

This approach have been implemented using standard
C/C++ tool chains, provided with the each of the API. It
exposed following disadvantages:

• Very complicated compilation and linking. The both
applications have to be linked to full sets of EPICS
and ADO libraries.

• Difficult transition from 32bit to 64bit architecture.
• A separate ADO manager is required to host the

ADO PVs.

Python ADO Manager With PyEpics Module
The Python interfaces for both systems had been

developed recently: PyEpics [2] for EPICS and PyADO
[3] for ADO. These interfaces provide an easy way to
develop an ADO manager which directly communicates
with the EPICS IOC. The PyADO package is pure
Python, the PyEpics requires libca.so shared library.

Figure 4: Python ADO Manager for the EPICS IOC.

During initialization, the ADO manager creates a
dictionary between the EPICS PV names and the ADO
PVs and methods. During the PV creations, the
parameters, which should be translated to EPICS have the
set() function defined to use epics.caput() for setting the
parameter. The manager calls the epics.camonitor() with
the same callback method for each PV. The callback
method will be called when any of the EPICS PV have
been changed, in that case the update_ADO() is called to
set the corresponding ADO PV.

Advantages:
• Link to EPICS API is simple, the only requirement is

that the PYEPICS_LIBCA environment variable
should point to a valid shared library libca.so.

• 32bit/64bit architecture independence.
• The program is much more concise, for example, the

number of source lines is ~300 as opposed to ~2200
for the two-way translation approach.

• The performance is not affected, the PV access time
is ~1 ms, it is mainly defined by the handling inside
of the RPC layer.

Optionally, instead of using epics.camonitor() the
monitoring of the EPICS PVs can be done by launching a
system call to execute a camonitor program. This is

particularly useful for ssh access to EPICS IOC. The PV
access time in that case is ~ 0.4 s.

CONTROL OF THE ADO-MANAGED
DEVICE IN EPICS ENVIRONMENT.

For the reversed problem, when a device, provided with
the ADO support, needs to be used in the EPICS
environment, the solution is shown on Fig. 5.

Figure 5: Control of the ADO-managed device in EPICS
environment.

The soft IOC program, serving the device, calls the
pyado.getAsync(), which is the ADO equivalent of the
epics.camonitor(), to assign the same callback function to
every EPICS PV. The callback() translates incoming
ADO PV to outgoing EPICS PV and calls ca_put() to set
it. The soft IOC is hosting the database of 'ai' and 'ao'
records.

The CNS program should be configured to resolve the
ADO names using a local file.

CONCLUSION
The described solutions have been applied to control a

180 degree bending magnet for Low Energy RHIC
Electron Cooling Project [4], controlled by an EPICS-
based IOC [5]. The number of PVs provided by the
device IOC is close to one hundred. It was successfully
implemented into the RHIC Control System and supplied
with the GUI, similar to the native Control System Studio.
The most effective approach is to use the Python ADO
Manager with PyEpics module, it provides the same
performance as C/C++ solution and eliminates the need
for complicated compilation and linking.

The solution for reversed task, when the device is
delivered with the RHIC Control support needs to be used
in the EPICS environment, is presented on Fig. 5.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA146

Integrating Diverse Systems
TUPHA146

749

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

REFERENCES
[1] K. A. Brown, “C-AD Controls Systems various notes on

history, architecture, and modern systems”, in Collider-
Accelerator Department Documentation - Notes, 2012.

[2] PyEpics: Epics Channel Access for Python,
http://cars9.uchicago.edu/software/python/pyepics3

[3] K.A. Brown , T. D’Ottavio, W. Fu, A. Marusic, J. Morris, S.
Nemesure, A. Sukhanov, October 2017, paper TUPHA153,
this conference.

[4] J. Kewish, A.V. Fedotov, D. Kayran, S. Seletskiy, October
2016, paper WEA4CO05, Proc. of NAPAC2016.

[5] Y. Tian, W. Louie, J.Ricciardelli, L.R. Dalesio, G. Ganetis,
October 2009, paper WEB005, ICALEPCS2009.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA146

TUPHA146
750

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Integrating Diverse Systems

