

TOWARDS A TIME-CONSTRAINED SERVICE-ORIENTED
ARCHITECTURE FOR AUTOMATION AND CONTROL IN LARGE-

SCALE DYNAMIC SYSTEMS

Gang Chen, Baoran An, Institute of Computer Application, Mianyang, P. R. China

Abstract
Rapidly changing demands for interoperability among

heterogeneous systems leads to a paradigm shift from pre-
defined control strategies to dynamic customization with-
in many automation systems, e.g., large-scale scientific
facilities. However, today's mass systems are of a very
static nature. Fully changing the control process requires a
high amount of expensive manual efforts and is quite
error prone. Hence, flexibility will become a key factor in
the future control systems. The adoption of web services
and Service-Oriented Architecture (SOA) can provide the
requested capability of flexibility. Since the adaptation of
SOAs to automation systems has to face time-constrained
requirements, particular attention should be paid to real-
time web services for deterministic behaviour. This paper
proposes a novel framework for the integration of a Time-
Constrained SOA (TcSOA) into mass automation sys-
tems. Our design enables service encapsulation in filed
level and evaluates how real time technologies can be
synthesized with web services to enable deterministic
performance.

INTRODUCTION
Today, the automation systems face challenges due to

the changing demands on interoperability from their us-
ers. Formally, mass and standardized output was a key
factor for the competitiveness. Nowadays and in the fu-
ture the customization will become more and more im-
portant. Furthermore, the development cycles of these
systems are about to become much shorter. This leads to a
paradigm shift from mass production to mass customiza-
tion within the dynamic system [1][2]. This means that
the systems must be rapidly designed, able to convert
quickly to the new models and able to integrate technolo-
gy.

Currently, the engineering process for automation is
characterized by high time-consuming manual configura-
tion efforts. For example, in device-centric facilities for
basic scientific research, all device properties and the data
to be transferred must be defined by an automation engi-
neer. Any modification of such a system requires an at
least partial manual reconfiguration. Most of the time, the
flexibility of current systems is limited to the pre-defined
boundaries of the system. Therefore, the manual engineer-
ing is a major obstacle on the way to future fully automat-
ed systems.

Furthermore, the advance of engineering technologies
relates closely to information technologies (ITs). Since
design and operation of a dynamic system needs numer-
ous types of decision-making at all of its hierarchy levels

of automation, prompt and effective decisions not only
depend on advanced reasoning techniques, but also on
real-time data gathering and processing [3]. Every major
development of automation has been supported by the
advancement of IT. For example, the widely adoption of
computer numerical control (CNC) made flexible manu-
facturing systems (FMSs) feasible; the technologies for
distributed control systems (DCSs) made the interconnec-
tion of various parts in large automation systems practi-
cal. That is the reason why more and more cases in scien-
tific scenarios rely on the professional provides of IT
software solutions to replace or advance their convention-
al systems.

By today, the software infrastructure of big systems is
often organized in vertical automation layers accordingly,
shown as figure 1.

H
or

iz
on

ta
l I

n
te

gr
at

io
n

L
ow

H
ig

h

Figure 1: Automation Layers.

At the field layer, sensors and actuators provide inter-
face to control physical processes. At the control layer,
Programming Logic Controllers (PLCs) read from sen-
sors, process them and generate new signals for the actua-
tors. This process is repeated cyclically and autonomously
on the basis of pre-defined control logic. At the operation
layer, the data of the sub-system is gathered and visual-
ized by industrial control software suite, like Supervisory
Control and Data Acquisition (SCADA). And then, all the
sub-systems are interconnected by distributed control
systems based on Ethernet. This layer acts as a mediator
between operation layer and business layer. It is in charge
of collecting and integrating data from all operations for
upper layer, and translating control orders into concrete
control commands. Finally, the business layer contains
software functionally for planning purpose. From the
communication aspect, the layers differ in their require-
ments on real-time communication, especially for device-
centric dynamic systems.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA152

TUPHA152
760

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

We are motivated to investigate the standard device-
centric Service-Oriented Architecture (SOA) and try to
find a possible way to fulfil interoperability requirements
of large systems. This paper has two main contributions:
(1) we present a web service communication policy for
non-standard application requirements; (2) A Time-
Constrained Service-Oriented Software Architecture
(TcSOA) is outlined that supports the convergence of
heterogeneous automation layers. This work represents a
partial aspect of the overall objective of reducing the
engineering effort.

DEVICE-CENTRIC SOA IN LARGE
SCALE SYSTEMS

The reduction of engineering effort is crucial in many
research projects. This section presents our proposal to
use web services as a communication backbone through-
out a system. For this purpose, the SOA in automation
systems are introduced briefly.

SOAs are software design patterns stemming from the
IT field. The first group trying to use SOA in control
systems propose that new services expose only their own
certain functionality, and legacy applications have to
divide their functionality into components and then wrap
each component by a web service. That means, the im-
plementation of each service is not visible from outside.
The services embedded in the same system are loosely
coupled: They operate independently from each other,
their interactions are stateless, asynchronous and not
context-related [4][5].

In device-centric automation systems, the services rep-
resent the functionalities of individual devices or pro-
cessing modules, like simulating cells. The behaviour of
the overall system is controlled by the coordination of all
services. Due to independency and interoperation of ser-
vices, the device-centric systems can be arranged by se-
quence-controlled services, which imply that reengineer-
ing effort for modifying existing automation structures
can be minimized. Whereas the components of current big
systems are interconnected and tightly-integrated, the
automation engineers have to deal with any tiny modifica-
tion with much manual effort, even in the initial setup
stage of a system [6]. Furthermore, such type of composi-
tion must be guaranteed by an orchestration engine, which
provides particular strategies to composite services,
schedule the controlled services and to move up the newly
composed service sequence to a higher layer.

Unfortunately, apart from the aforementioned ad-
vantages, the device-centric SOA approach is not ade-
quate for describing the real-time constraints in many
cases, due to non-real-time communication policies.
Many techniques and standards are used for realizing
device-centric SOA. For example, the web services are
used as communication protocols that are called by SOAP
RPC [7] through SOAP engines, like Apache Axis 2 [8],
and WSDL [9] is used as service call interface.

As demonstrated in previous work, future dynamic sys-
tems can adopt and benefit from SOA, especially in some

device-centric scenarios. Furthermore, this framework can
be applied in horizontally and vertically within the auto-
mation systems. The architecture is illustrated in Figure 2.
The services provided by device producers are orchestrat-
ed though a particular middleware or directly used as
service modules in dynamic systems.

M
id

d
le

w
ar

e

Figure 2: Device-Centric Service Framework.

DEFINING A WEB SERVICE
COMMUNICATION POLICY

Actually, web services are not really suitable for im-
plementing applications with non-standard communica-
tion requirements. This section discusses the real-time
communication in SOAs again.

Real-Time Views in SOA
In time-constrained SOA, service providers can enable

real-time services, i.e. invocations of services must be
completed within specific timing constraints. As well, in
device-centric SOA environment, the device producers
can provide services that follow time-constraint require-
ments. Besides that, all operations in systems that are
facilitated by SOA have to abide by time-constraints.

Figure 3: Lifecycle of SOAs.

To clarify the time-constraint requirements in SOAs,
we will now look at the lifecycle of a SOA [10][11], in-
cluding modelling, assembling, deployment and manage-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA152

Software Technology Evolution
TUPHA152

761

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

ment, as shown in Figure 3. It is necessary to investigate
the common techniques in service lifecycle of traditional
SOAs in terms of the needs of real-time requirements.

In the modelling phase, individual services are initial-
ized and specified. Many attributes and properties are
setup, including the functionalities and time-constraints.
The sequenced execution order is also formed and shaped
in this phase. Service providers have to restrict timing-
related attributes to some particular values, i.e. the re-
sponse time, invocation frequency and service timeliness.
After that, individual services can be orchestrated into
top-level services through the assembling phase. During
orchestration, the consistency and completeness of adja-
cent services should be checked and evaluated. The con-
trol logic in orchestration engine is responsible for service
composition. All these operations should have bound
response time. In deployment and management phases, in
order to guarantee time-constraints, the usage of resources
should be reserved, like network bandwidth, power sup-
plies, CPU time and build-in hardware modules.

Basic Idea: Real-Time Communication Policy
Real-time communication policies have been discussed

in the scientific community for more than a decade and
despite their advantages, however, they are still not estab-
lished in enterprise level applications. Here we pay atten-
tion to two types of time-constrained scenarios requiring
for real-time communication policies.

The first scenario is to examine the communication be-
tween individual services. Since services might exist in
different remote nodes, the real-time communication is a
critical issue that needs to resolve to achieve the objec-
tives of TcSOA. We have analysed different setups with
service communication to identify which parts could be
omitted to reduce time requirements. Basically, messaging
techniques are the most important parts of service com-
munication implementations. Firstly, messages to be ex-
changed between services need to be serialized in real-
time for marshalling/unmarshalling[11]; The resource
requirements, such as channel bandwidth and CPU time,
need to be reserved. Because the messages may cross
over multiple layers and corresponding protocols, a ser-
vice can provide various levels of messages. Regardless
of which level, a time-constrained message should pos-
sess the following characteristics:
 Limited response time set, like the minimum and

maximum response time
 Recovery strategies (such as message retransmission

mechanisms)
 Maximum data capacity
 Degree of concurrency, like the maximum number of

receivers that the message is sending to
 Cost and required resources
The quality of messaging on real-time properties almost

determine the real-time achievements of the whole ser-
vices, which implies that the service providers have to
adjust their services according to the application scenari-
os, such as resource constraints, data exchange, modelling
methods and real-time requirements.

The second scenario is to investigate the real-time
communication policies in device-centric environment.
Due to the development of fully integrated and flexible
end-to-end SOA platforms, i.e. Enterprise Service Bus
(ESB), the SOA architecture is made practical in real-
world applications [12]. However, SOA-steered applica-
tions are still not adequate for device-centric dynamic
systems, because there are so many hardware modules
existing in this type of systems, like sensors, actuators and
other PLC-based devices.

The main devices used in the bottom layer of a control
system are front-end computers and PLC controlled de-
vices, such as industrial computers, step motors and servo
motors. In traditional dynamic systems, the devices newly
integrated are connected to some PLC applications and
the PLCs are linked to a front-end computer via real-time
Ethernet, as shown in Figure 4.

As most devices, like sensors and actuators, are off-the-
shelf products, it is unrealistic to require all device pro-
ducers to provide web services for the devices according-
ly, especially with real-time constraints. Meanwhile, we
have noticed that real-time constraints are only required
by small groups of devices in the real-world control sys-
tems, like some particular sensors and their corresponding
actuators. Thus, it is vital to identify the parts with and
without real-time requirements in device-centric control
systems.

PLC

Input Processing Output

IO Devices/EtherCat

Loop Function

SensorsSensorsSensors
ActuatorsActuatorsActuators

Device Server-PC

Device Services

Data Streaming

Figure 4: Current Control System.

Here, we propose a novel concept Device-Cluster-
Virtual-Module (DCVM) to instead of the concept of
individual device. A DCVM is a small group of physical
tightly-coupled devices, which can provide some func-
tionality to the outside world. Within a DCVM, the devic-
es are interconnected via real-time communication based
industrial data bus, like field bus. That means, inside the
DCVM, all devices are tightly-coupled while DCVMs are
loosely-coupled between each other. In order to control
the behaviours of the devices and data processing, an
embedded orchestration engine is integrated in each
DCVM, which provide control logic by automation engi-
neers for device communication and management. For the
purpose of connecting with outside SOA and hiding the
PLC details from outside, we should establish a small
embedded web service engine for each DCVM, which
will reorganize the PLC applications to permit automatic

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA152

TUPHA152
762

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

identification of functional entities. A sample DCVM is
shown in Figure 5.

PLC

Maintenance
Function

Monitoring
Function

Fault
Tolerance

Device Server-PC

Device Services

Data Streaming

control logic

Sensors Actuators

real-time
communication

Sensors Actuators

real-time
communication

embedded orchestration engine

control logic

Safety Critical
Module

Loosely Coupled

Figure 5: A schema of DCVM.

This design pattern allows PLCs to offer standard web
services and users can use standard tools to access the
bottom layer of automation systems. The technical details
of PLC will be invisible from users. Thus, automation
engineers can operate their familiar development envi-
ronment to develop and deploy control applications.

SYSTEM ARCHITECTURE

Real-Time Requirements
The architecture envisioned in this paper aims to de-

vice-centric automation systems involving devices and
subsystems that are very different in nature and typical
time-scale of operations. Considering our preceding
statements and real-world requirements, we outline the
following non-general classification of time-constraints:
 The business layer transforms business logic and ba-

sically has no QoS requirements and need more sup-
ports in best-effort way.

 Communications throughout the whole system,
which typically are of less critical real-time require-
ments, and whose reaction times need to reside with-
in several hundreds of milliseconds (i.e., less than
200ms).

 Communications between SOA services belonging to
the same categories, i.e., data services, middleware
services, are always constrained to hundreds of milli-
seconds, i.e., 100ms.

 Communications among devices located in the sub-
systems with the same boundaries. Their time-
constraints are typically in the period of hundreds of
milliseconds.

 Interactions at the same module (DCVM), i.e. the
couple of sensor and actuator, usually require 10ms-
level time-constraints.

 Interactions at different module but belonging to the
same mechatronic unit are also required to perform
in 10ms.

The goal of the architecture is to let services with dif-
ferent time-constraints coexist in the same system. Solu-
tions, like optimized scheduling algorithms, dedicated
hardware and software, efficient protocols and resource
reservations can be of benefit to achieve the goal.

Software Modelling and Real-Time Properties
Software modelling is a basic issue in almost every ap-

plication. As aforementioned, a service-oriented model
has been chosen as the software paradigm, since it in-
creases design and execution flexibility. A service is char-
acterized as an elementary unit which enable the building
of distributed applications in a decoupled way, i.e. ser-
vices located at remote nodes can communicate with each
other via messages or events. Hence, a service can be
considered as a data channel, as shown in Figure 6. It
receives some input data, processes them and produces
results that can be delivered to other services or trans-
ferred to the higher layers.

S1 S2

Input
data

Input
data

Output
interface

Data
exchange

Data
streaming

Figure 6: Data Channel Model for services.

Since services are encapsulated as functional units, it is
possible to extend the applications via interconnecting the
services. Aided by distributed techniques, it looks like
that these services reside in the same pool. Actually, ser-
vice-oriented applications are groups of services in the
form of graphs [13], as illustrated in Figure 7. The ellipses
at the top of the picture denote decoupling points (mes-
sages), where individual components can be connected
and disconnected without any change of the connected
systems. Within a reuse component, the circles denote
services, and the connecting lines or arrows are the mes-
sages exchanged between them. In this model, service
connections can have dependencies that can be both func-
tional (data transferring and portal computability) and
non-functional (time-constraints and resource-
constraints). In this context, the real-time properties have
to be guaranteed whenever there is a functional or non-
functional variation. In any case, it implies a transition
from one state (Sinit) to a target state (Starget). Time-
constraints are going to achieve whenever the transition
from Sinit to Starget is performed in less than the speci-
fied time td as:

f(Starget, Starget)<td

Fundamentally, the goal of real-time properties is that
the function f must be time-bounded. Therefore, f depends
on a number of levels that must be carefully considered,
like hardware, middleware and operating systems[14].

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA152

Software Technology Evolution
TUPHA152

763

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

S1

S2

S3

S4

S6

S5

Interface

Message Message

Interface Interface

S1

S2

S3

S4

S6

S5

S1

S2

S3

S4

S6

S5

Pub PubSub
Sub

Horizontal: Business Integraion

V
ertical: C

ontrol L
ayer Integraion, SO

A

Service and data
reuse

Service and data
reuse

Service and data
reuse

Decoupling Boundaries
Figure 7: SOA Application as a Graph Structure.

Architecture
Figure 8 depicts the envisioned Time-Constrained SOA

(TcSOA) development environment that integrates time-
constrained web services and consists of four functional
layers – application layer, execution layer, real-time ser-
vice layer and hardware layer – which contain several
components to meet the demands of web service based
automation systems. The integration of devices and stand-
ard services will be enabled by encapsulating functions
inside communication policies. Generally, in this envi-
sioned architecture, what we are trying to do is that Eve-
rything-as-a-Service (XaaS) for automation.

As shown in Figure 8, the control and field layers are
encapsulated in DVCMs. DVCMs cover functionalities of
all physical devices. As well, the upper levels have been
changed. They contain all infrastructural components of
the TcSOA framework. Potential users of this framework
are automation engineers who are domain experts but do
not necessarily know web services.

Business Process

Technical Process

Controller

Sensors Actuators

DCVM

Field Tier

Control Tier

X
aa

S

Everything as a Service

Horizontal Integration

V
er

ti
ca

l I
n

te
gr

at
io

n

Life
-C

yc
le

|

Real-time
Repository

Other Custom
Application

Monitoring
Monitoring

Experiments
Experiments

Dynamic Service
Composition

SOA
metadata

Controlled Workflow

Communication
Policies

Time-Constrained
Execution Environment

Data SerivcesData Serivces

Time-Constrained
Web Services

Time-Constrained
Web Services

R
ea

l-
T

im
e

S
er

vi
ce

 L
ay

er

E
xe

.
L

ay
er

A
p

p.

L
ay

er

Figure 8: Architecture for Time-Constrained Services

CONCLUSIONS AND OUTLOOK
Future automation and control applications will need to

be developed at a rapid pace in order to capture the re-
quired agility. Typical software development approaches
need more manual efforts and posses less flexibilities.
Thus, future control systems should be adjusted to new
paradigm of distributed large systems with collaboration
and multi-layer interactions. In this paper, solutions based
on web services have been analyzed to find their poten-
tials for deployment in large scale dynamic systems. This
would be possible with migration of current automation
functions to web services by considering the SOA re-
quirements of applications. Significant work need to be
invested towards further investigating the interdependen-
cies and needs of all targeted service domains as well as
the technologies for realizing them.

REFERENCES
[1] L. Duerkop, H. Trsek, J. Otto and J. Jasperneite, “A Field

Level Architecture for Reconfigurable Real-time Automa-
tion Systems”, in Proc. WFCS’14, Toulouse, France, May
2014.

[2] H. ElMaraghy and H. –P. Wiendahl, “Changeability- An
Introduction”, Changeable and Reconfigurable Manufactur-
ing Systems and Transformable Factories’09 , pp. 1-24.

[4] I. M. Delamer and J. L. M. Lastra, “Loosely-Coupled Au-
tomation Systems Using Device-Level SOA”, in Proc.
INDIN’07, Vienna, Austria, Jul. 2007, pp. 743-748.

[5] Lars Duerkp, Juergen Jasperneite and Alexander Fay, “An
analysis of Real-time Ethernets with Regard to Their Auto-
matic Configuration”, in Proc. WFCS’15, Palma de Mallor-
ca, Spain, May 2015.

[6] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future
of industrial communication: Automation networks in the
era of IoT and Industry 4.0”, Ind. Electron. Mag., vol. 11,
no.1, 2017, pp. 17-27.

[7] M. Loskyll, J. Schlick, S. Hodek et al, “Semantic service
discovery and orchestration for manufacturing processes”,
in Proc. ETFA’11, Toulouse, France, Sep. 2011.

[8] M. Gudgin et al, “SOAP Version 1.2 Part 2: Adjuncts”, June
2003.[online] Available:
http://www.w3.org/TR/soap12-part2/.

[9] Apache Axis 2, http://ws.apache.org/axis2/

[10] WSDL, https://www.w3.org/TR/

[11] R. High, S. Kinder, S. Graham, “IBM’s SOA Foundation:
An Architecture Introduction and Overview”, 2005.11.

[12] W. T. Tsai, Y. –H, Lee and Z. Cao, “RTSOA: Real-time
service-oriented architecture”, in Proc. SOSE’06, Shanghai,
China, Oct. 2006, pp. 49-56.

[13] M. –T. Schmidt et al., “The Enterprise Service Bus: Mak-
ing Service-Oriented Architecture Real”, IBM System Jour-
nal 44, no. 4, 2005, pp. 781-798.

[14] M. G. Valls, I. R. Lopez, I. F. Villar, “iLand: an enhanced
middleware for real-time reconfiguration of service oriented
distributed real-time systems”, IEEE Trans. on Industrial In-
formatics, vol. 9(1), pp. 228-236, 2013.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA152

TUPHA152
764

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

