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Abstract 
Rapidly changing demands for interoperability among 

heterogeneous systems leads to a paradigm shift from pre-
defined control strategies to dynamic customization with-
in many automation systems, e.g., large-scale scientific 
facilities. However, today's mass systems are of a very 
static nature. Fully changing the control process requires a 
high amount of expensive manual efforts and is quite 
error prone. Hence, flexibility will become a key factor in 
the future control systems. The adoption of web services 
and Service-Oriented Architecture (SOA) can provide the 
requested capability of flexibility. Since the adaptation of 
SOAs to automation systems has to face time-constrained 
requirements, particular attention should be paid to real-
time web services for deterministic behaviour. This paper 
proposes a novel framework for the integration of a Time-
Constrained SOA (TcSOA) into mass automation sys-
tems. Our design enables service encapsulation in filed 
level and evaluates how real time technologies can be 
synthesized with web services to enable deterministic 
performance. 

INTRODUCTION 
Today, the automation systems face challenges due to 

the changing demands on interoperability from their us-
ers. Formally, mass and standardized output was a key 
factor for the competitiveness. Nowadays and in the fu-
ture the customization will become more and more im-
portant. Furthermore, the development cycles of these 
systems are about to become much shorter. This leads to a 
paradigm shift from mass production to mass customiza-
tion within the dynamic system [1][2]. This means that 
the systems must be rapidly designed, able to convert 
quickly to the new models and able to integrate technolo-
gy.  

Currently, the engineering process for automation is 
characterized by high time-consuming manual configura-
tion efforts. For example, in device-centric facilities for 
basic scientific research, all device properties and the data 
to be transferred must be defined by an automation engi-
neer. Any modification of such a system requires an at 
least partial manual reconfiguration. Most of the time, the 
flexibility of current systems is limited to the pre-defined 
boundaries of the system. Therefore, the manual engineer-
ing is a major obstacle on the way to future fully automat-
ed systems.  

Furthermore, the advance of engineering technologies 
relates closely to information technologies (ITs). Since 
design and operation of a dynamic system needs numer-
ous types of decision-making at all of its hierarchy levels 

of automation, prompt and effective decisions not only 
depend on advanced reasoning techniques, but also on 
real-time data gathering and processing [3]. Every major 
development of automation has been supported by the 
advancement of IT. For example, the widely adoption of 
computer numerical control (CNC) made flexible manu-
facturing systems (FMSs) feasible; the technologies for 
distributed control systems (DCSs) made the interconnec-
tion of various parts in large automation systems practi-
cal. That is the reason why more and more cases in scien-
tific scenarios rely on the professional provides of IT 
software solutions to replace or advance their convention-
al systems.  

By today, the software infrastructure of big systems is 
often organized in vertical automation layers accordingly, 
shown as figure 1.  
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Figure 1: Automation Layers. 

At the field layer, sensors and actuators provide inter-
face to control physical processes. At the control layer, 
Programming Logic Controllers (PLCs) read from sen-
sors, process them and generate new signals for the actua-
tors. This process is repeated cyclically and autonomously 
on the basis of pre-defined control logic. At the operation 
layer, the data of the sub-system is gathered and visual-
ized by industrial control software suite, like Supervisory 
Control and Data Acquisition (SCADA). And then, all the 
sub-systems are interconnected by distributed control 
systems based on Ethernet. This layer acts as a mediator 
between operation layer and business layer. It is in charge 
of collecting and integrating data from all operations for 
upper layer, and translating control orders into concrete 
control commands. Finally, the business layer contains 
software functionally for planning purpose. From the 
communication aspect, the layers differ in their require-
ments on real-time communication, especially for device-
centric dynamic systems.  
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We are motivated to investigate the standard device-
centric Service-Oriented Architecture (SOA) and try to 
find a possible way to fulfil interoperability requirements 
of large systems. This paper has two main contributions: 
(1) we present a web service communication policy for 
non-standard application requirements; (2) A Time-
Constrained Service-Oriented Software Architecture 
(TcSOA) is outlined that supports the convergence of 
heterogeneous automation layers. This work represents a 
partial aspect of the overall objective of reducing the 
engineering effort. 

DEVICE-CENTRIC SOA IN LARGE 
SCALE SYSTEMS 

The reduction of engineering effort is crucial in many 
research projects. This section presents our proposal to 
use web services as a communication backbone through-
out a system. For this purpose, the SOA in automation 
systems are introduced briefly.  

SOAs are software design patterns stemming from the 
IT field. The first group trying to use SOA in control 
systems propose that new services expose only their own 
certain functionality, and legacy applications have to 
divide their functionality into components and then wrap 
each component by a web service. That means, the im-
plementation of each service is not visible from outside. 
The services embedded in the same system are loosely 
coupled: They operate independently from each other, 
their interactions are stateless, asynchronous and not 
context-related [4][5]. 

In device-centric automation systems, the services rep-
resent the functionalities of individual devices or pro-
cessing modules, like simulating cells. The behaviour of 
the overall system is controlled by the coordination of all 
services. Due to independency and interoperation of ser-
vices, the device-centric systems can be arranged by se-
quence-controlled services, which imply that reengineer-
ing effort for modifying existing automation structures 
can be minimized. Whereas the components of current big 
systems are interconnected and tightly-integrated, the 
automation engineers have to deal with any tiny modifica-
tion with much manual effort, even in the initial setup 
stage of a system [6]. Furthermore, such type of composi-
tion must be guaranteed by an orchestration engine, which 
provides particular strategies to composite services, 
schedule the controlled services and to move up the newly 
composed service sequence to a higher layer.  

Unfortunately, apart from the aforementioned ad-
vantages, the device-centric SOA approach is not ade-
quate for describing the real-time constraints in many 
cases, due to non-real-time communication policies. 
Many techniques and standards are used for realizing 
device-centric SOA. For example, the web services are 
used as communication protocols that are called by SOAP 
RPC [7] through SOAP engines, like Apache Axis 2 [8], 
and WSDL [9] is used as service call interface. 

As demonstrated in previous work, future dynamic sys-
tems can adopt and benefit from SOA, especially in some 

device-centric scenarios. Furthermore, this framework can 
be applied in horizontally and vertically within the auto-
mation systems. The architecture is illustrated in Figure 2. 
The services provided by device producers are orchestrat-
ed though a particular middleware or directly used as 
service modules in dynamic systems. 
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Figure 2: Device-Centric Service Framework. 

DEFINING A WEB SERVICE              
COMMUNICATION POLICY 

Actually, web services are not really suitable for im-
plementing applications with non-standard communica-
tion requirements. This section discusses the real-time 
communication in SOAs again. 

Real-Time Views in SOA 
In time-constrained SOA, service providers can enable 

real-time services, i.e. invocations of services must be 
completed within specific timing constraints. As well, in 
device-centric SOA environment, the device producers 
can provide services that follow time-constraint require-
ments. Besides that, all operations in systems that are 
facilitated by SOA have to abide by time-constraints.  

 
Figure 3: Lifecycle of SOAs. 

To clarify the time-constraint requirements in SOAs, 
we will now look at the lifecycle of a SOA [10][11], in-
cluding modelling, assembling, deployment and manage-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA152

Software Technology Evolution
TUPHA152

761

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



 

 

ment, as shown in Figure 3. It is necessary to investigate 
the common techniques in service lifecycle of traditional 
SOAs in terms of the needs of real-time requirements.  

In the modelling phase, individual services are initial-
ized and specified. Many attributes and properties are 
setup, including the functionalities and time-constraints. 
The sequenced execution order is also formed and shaped 
in this phase. Service providers have to restrict timing-
related attributes to some particular values, i.e. the re-
sponse time, invocation frequency and service timeliness. 
After that, individual services can be orchestrated into 
top-level services through the assembling phase. During 
orchestration, the consistency and completeness of adja-
cent services should be checked and evaluated. The con-
trol logic in orchestration engine is responsible for service 
composition. All these operations should have bound 
response time. In deployment and management phases, in 
order to guarantee time-constraints, the usage of resources 
should be reserved, like network bandwidth, power sup-
plies, CPU time and build-in hardware modules. 

Basic Idea: Real-Time Communication Policy 
Real-time communication policies have been discussed 

in the scientific community for more than a decade and 
despite their advantages, however, they are still not estab-
lished in enterprise level applications. Here we pay atten-
tion to two types of time-constrained scenarios requiring 
for real-time communication policies. 

The first scenario is to examine the communication be-
tween individual services. Since services might exist in 
different remote nodes, the real-time communication is a 
critical issue that needs to resolve to achieve the objec-
tives of TcSOA. We have analysed different setups with 
service communication to identify which parts could be 
omitted to reduce time requirements. Basically, messaging 
techniques are the most important parts of service com-
munication implementations. Firstly, messages to be ex-
changed between services need to be serialized in real-
time for marshalling/unmarshalling[11]; The resource 
requirements, such as channel bandwidth and  CPU time, 
need to be reserved. Because the messages may cross 
over multiple layers and corresponding protocols, a ser-
vice can provide various levels of messages. Regardless 
of which level, a time-constrained message should pos-
sess the following characteristics: 
 Limited response time set, like the minimum and 

maximum response time 
 Recovery strategies (such as message retransmission 

mechanisms) 
 Maximum data capacity  
 Degree of concurrency, like the maximum number of 

receivers that the message is sending to 
 Cost and required resources 
The quality of messaging on real-time properties almost 

determine the real-time achievements of the whole ser-
vices, which implies that the service providers have to 
adjust their services according to the application scenari-
os, such as resource constraints, data exchange, modelling 
methods and real-time requirements.  

The second scenario is to investigate the real-time 
communication policies in device-centric environment. 
Due to the development of fully integrated and flexible 
end-to-end SOA platforms, i.e. Enterprise Service Bus 
(ESB), the SOA architecture is made practical in real-
world applications [12]. However, SOA-steered applica-
tions are still not adequate for device-centric dynamic 
systems, because there are so many hardware modules 
existing in this type of systems, like sensors, actuators and 
other PLC-based devices.  

The main devices used in the bottom layer of a control 
system are front-end computers and PLC controlled de-
vices, such as industrial computers, step motors and servo 
motors. In traditional dynamic systems, the devices newly 
integrated are connected to some PLC applications and 
the PLCs are linked to a front-end computer via real-time 
Ethernet, as shown in Figure 4. 

As most devices, like sensors and actuators, are off-the-
shelf products, it is unrealistic to require all device pro-
ducers to provide web services for the devices according-
ly, especially with real-time constraints. Meanwhile, we 
have noticed that real-time constraints are only required 
by small groups of devices in the real-world control sys-
tems, like some particular sensors and their corresponding 
actuators. Thus, it is vital to identify the parts with and 
without real-time requirements in device-centric control 
systems. 

PLC

Input Processing Output

IO Devices/EtherCat

Loop Function

SensorsSensorsSensors
ActuatorsActuatorsActuators

Device Server-PC

Device Services

Data Streaming

 
Figure 4: Current Control System. 

Here, we propose a novel concept Device-Cluster-
Virtual-Module (DCVM) to instead of the concept of 
individual device. A DCVM is a small group of physical 
tightly-coupled devices, which can provide some func-
tionality to the outside world. Within a DCVM, the devic-
es are interconnected via real-time communication based 
industrial data bus, like field bus. That means, inside the 
DCVM, all devices are tightly-coupled while DCVMs are 
loosely-coupled between each other. In order to control 
the behaviours of the devices and data processing, an 
embedded orchestration engine is integrated in each 
DCVM, which provide control logic by automation engi-
neers for device communication and management. For the 
purpose of connecting with outside SOA and hiding the 
PLC details from outside, we should establish a small 
embedded web service engine for each DCVM, which 
will reorganize the PLC applications to permit automatic 
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identification of functional entities. A sample DCVM is 
shown in Figure 5. 
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control logic

Sensors Actuators

real-time 
communication

Sensors Actuators

real-time 
communication

embedded orchestration engine 

control logic

Safety Critical 
Module

Loosely Coupled

 
Figure 5: A schema of DCVM. 

This design pattern allows PLCs to offer standard web 
services and users can use standard tools to access the 
bottom layer of automation systems. The technical details 
of PLC will be invisible from users. Thus, automation 
engineers can operate their familiar development envi-
ronment to develop and deploy control applications.   

SYSTEM ARCHITECTURE 

Real-Time Requirements 
The architecture envisioned in this paper aims to de-

vice-centric automation systems involving devices and 
subsystems that are very different in nature and typical 
time-scale of operations. Considering our preceding 
statements and real-world requirements, we outline the 
following non-general classification of time-constraints: 
 The business layer transforms business logic and ba-

sically has no QoS requirements and need more sup-
ports in best-effort way. 

 Communications throughout the whole system, 
which typically are of less critical real-time require-
ments, and whose reaction times need to reside with-
in several hundreds of milliseconds (i.e., less than 
200ms). 

 Communications between SOA services belonging to 
the same categories, i.e., data services, middleware 
services, are always constrained to hundreds of milli-
seconds, i.e., 100ms. 

 Communications among devices located in the sub-
systems with the same boundaries. Their time-
constraints are typically in the period of hundreds of 
milliseconds. 

 Interactions at the same module (DCVM), i.e. the 
couple of sensor and actuator, usually require 10ms-
level time-constraints.  

 Interactions at different module but belonging to the 
same mechatronic unit are also required to perform 
in 10ms. 

The goal of the architecture is to let services with dif-
ferent time-constraints coexist in the same system. Solu-
tions, like optimized scheduling algorithms, dedicated 
hardware and software, efficient protocols and resource 
reservations can be of benefit to achieve the goal. 

Software Modelling and Real-Time Properties 
Software modelling is a basic issue in almost every ap-

plication. As aforementioned, a service-oriented model 
has been chosen as the software paradigm, since it in-
creases design and execution flexibility. A service is char-
acterized as an elementary unit which enable the building 
of distributed applications in a decoupled way, i.e. ser-
vices located at remote nodes can communicate with each 
other via messages or events. Hence, a service can be 
considered as a data channel, as shown in Figure 6. It 
receives some input data, processes them and produces 
results that can be delivered to other services or trans-
ferred to the higher layers.    

S1 S2

Input 
data

Input 
data

Output 
interface

Data 
exchange

Data 
streaming

 
Figure 6: Data Channel Model for services. 

Since services are encapsulated as functional units, it is 
possible to extend the applications via interconnecting the 
services. Aided by distributed techniques, it looks like 
that these services reside in the same pool. Actually, ser-
vice-oriented applications are groups of services in the 
form of graphs [13], as illustrated in Figure 7. The ellipses 
at the top of the picture denote decoupling points (mes-
sages), where individual components can be connected 
and disconnected without any change of the connected 
systems. Within a reuse component, the circles denote 
services, and the connecting lines or arrows are the mes-
sages exchanged between them. In this model, service 
connections can have dependencies that can be both func-
tional (data transferring and portal computability) and 
non-functional (time-constraints and resource-
constraints). In this context, the real-time properties have 
to be guaranteed whenever there is a functional or non-
functional variation. In any case, it implies a transition 
from one state (Sinit) to a target state (Starget). Time-
constraints are going to achieve whenever the transition 
from Sinit to Starget is performed in less than the speci-
fied time td as: 

f(Starget, Starget)<td 

Fundamentally, the goal of real-time properties is that 
the function f must be time-bounded. Therefore, f depends 
on a number of levels that must be carefully considered, 
like hardware, middleware and operating systems[14]. 
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Figure 7: SOA Application as a Graph Structure. 

Architecture 
Figure 8 depicts the envisioned Time-Constrained SOA 

(TcSOA) development environment that integrates time-
constrained web services and consists of four functional 
layers – application layer, execution layer, real-time ser-
vice layer and hardware layer – which contain several 
components to meet the demands of web service based 
automation systems. The integration of devices and stand-
ard services will be enabled by encapsulating functions 
inside communication policies. Generally, in this envi-
sioned architecture, what we are trying to do is that Eve-
rything-as-a-Service (XaaS) for automation. 

As shown in Figure 8, the control and field layers are 
encapsulated in DVCMs. DVCMs cover functionalities of 
all physical devices. As well, the upper levels have been 
changed. They contain all infrastructural components of 
the TcSOA framework. Potential users of this framework 
are automation engineers who are domain experts but do 
not necessarily know web services.  
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Figure 8: Architecture for Time-Constrained Services 

CONCLUSIONS AND OUTLOOK 
Future automation and control applications will need to 

be developed at a rapid pace in order to capture the re-
quired agility. Typical software development approaches 
need more manual efforts and posses less flexibilities. 
Thus, future control systems should be adjusted to new 
paradigm of distributed large systems with collaboration 
and multi-layer interactions. In this paper, solutions based 
on web services have been analyzed to find their poten-
tials for deployment in large scale dynamic systems. This 
would be possible with migration of current automation 
functions to web services by considering the SOA re-
quirements of applications. Significant work need to be 
invested towards further investigating the interdependen-
cies and needs of all targeted service domains as well as 
the technologies for realizing them. 
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