
CONTROLS CONFIGURATION DATABASE AT ESS

R. Fernandes
†
, S. Gysin, S. Regnell, European Spallation Source (ESS), Lund, Sweden

M. Vitorovič, S. Sah, Cosylab, Ljubljana, Slovenia

V. Vuppala, Facility for Rare Isotope Beams (FRIB), East Lansing, USA

Abstract
At the European Spallation Source (ESS), thousands of

(physical and logical) devices will be in production and
execute a wide range of functions to enable both the ma-
chine and end-station instruments to perform as expected
from a controls point of view. Typical examples of such
devices are racks, power supplies, motors, pumps, PLCs
and IOCs. To properly manage the information of devices
in an integrated fashion and at the same time allow exter-
nal applications (consuming this information) to perform
well, an application called Controls Configuration Data-
base (CCDB) was developed at ESS. The present paper
introduces this application, describes its features, archi-
tecture and technology stack, data concepts, interfaces,
and ecosystem; finally, it enumerates development direc-
tions that could be pursued to further improve it.

INTRODUCTION

Many research facilities are routinely facing the chal-
lenge of managing huge amounts of heterogeneous con-
trols-related information in a proper manner. Most have a
panoply of databases to tackle this or, worse, a monolithic
database composed of innumerous tables. Few facilities,
however, have a truly centralized, flexible and coherent
approach to manage such information which can ensure
that 1) the development effort is kept at a reasonable level
(by avoiding the proliferation of databases or a dense
database which is difficult to maintain), 2) data duplica-
tion/inconsistency is mitigated and, most importantly, 3)
users have access to a holistic view of the control system.

To overcome this challenge, the CCDB [1] was devel-
oped with the goal of enabling the collection, storage and
distribution of controls configuration data needed to in-
stall, commission and operate the ESS control system
from day one. Along with single sign-on capabilities
shared with disparate ESS applications, a fine-grained
user authorization mechanism, several ways to read/write
data from/into, multiple views over the same information,
the CCDB also has modelling capabilities: Users can
define device types and associate properties to these,
create devices (out of device types), and specify relation-
ships between these. Additionally, users can represent the
ESS control system in a hierarchical fashion through
containers and slots (placeholders in the control system
structure for devices). This modelling capability is actual-
ly the most prominent feature of this application as it
enables it to cope with virtually any kind of controls sce-
nario (that needs to be modelled/stored) but also lowers
both its development effort and persistence layer com-
plexity (i.e. database density). This feature considerably

reduces the time users have to wait to represent/store
devices as no software development is required.

Moreover, thanks to a well-defined programmatic inter-
face, the CCDB supports external applications (e.g. IOC
Factory) to perform their domain specific businesses
adequately and share data in an efficient way.

DESCRIPTION

The origins of the CCDB can be traced back to a pro-
ject called Proteus [2] developed at the Facility for Rare
Isotope Beams (FRIB) with the main goal of managing
controls configuration information. Due to this goal being
similar to what ESS was pursuing in 2013, the initial code
base of the CCDB actually sprung out of Proteus. A sig-
nificant portion of this code base (and to a lesser exten-
sion the database schema) had to be re-written to cope
with new (ESS) requirements though. Development of the
CCDB started in early 2014 and went into production at
the end of 2015. Since then, several versions have been
deployed, with version 1.3 released in October 2017 be-
ing the latest. Table 1 summarizes key CCDB metrics.

Table 1: Metrics about the CCDB

Description Value

Tables (persistence tier) 40

Constraints (persistence tier) 100

Indexes (persistence tier) 7

Lines of code (persistence tier) 0

Classes in Java (business tier) 388

Lines of code (business tier) 38,224

Web pages (presentation tier) 7

Dialogs (presentation tier) 21

Lines of code (presentation tier) 3,863

Nowadays, the CCDB is part of an international collab-

oration called DISCS [3]. This collaboration is composed

of several research facilities (ESS being one of them) with

the aim of developing databases, services and applications

that any experimental physics facility can easily config-

ure, use and extend for its commissioning, operation and

maintenance. The CCDB is being developed as the con-

figuration module within this collaboration, and is con-

sidered to be the most important module.

Features

Besides its major feature (modelling capabilities), the
CCDB has other features or characteristics worth men-
tioning. These are:

† ricardo.fernandes@esss.se

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA156

Software Technology Evolution
TUPHA156

775

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

 Single sign-on: thanks to RBAC [4] (an in-house ap-
plication that provides user access based on roles),
the CCDB shares single sign-on capabilities with
other applications at ESS – e.g. Naming Service,
IOC Factory. This eliminates the need of logging in
more than once when working with these. Fine-grained user authorization: currently the CCDB
authorizes users to perform operations through one
of three existing roles defined in RBAC: 1) Default
(role with minimum privileges that only allows users
to view stored data), 2) User (role with intermediate
privileges allowing users to view stored data and
create/update/delete devices only), and 3) Adminis-
trator (role with maximum privileges allowing users
to view stored data and create/update/delete all data
concepts). This provides full control of who can do
what in the CCDB. Multiple interfaces: several interfaces are provided
by the CCDB to serve different needs including a
graphical interface (web-based to support the ESS
business model which has many users scattered
across its European member states), batch data entry
through EXCEL files, and RESTful services for ap-
plications to consume (see subsection Interfaces for
additional details). Data reuse: data entries defined/done by one user
(e.g. a device type) may be reused by another. This
not only lowers the effort spent in performing this
kind of task but also minimizes data inconsistencies
that can otherwise emerge. Multiple views: the CCDB offers several views over
the same data based on the type of relationship. In
other words, users may browse data in function of
Contains, Controls, Powers and Connects relation-
ships, providing a better picture of the controls work-
flow. Inventory: basic inventory functionalities can be
found in the CCDB allowing all devices at ESS to be
registered (representing a warehouse) and a subset to
be installed in a data concept called slots (represent-
ing devices in production). Traceability: the CCDB logs all operations that were
performed which have changed its data (e.g. create a
new property). Users may browse this to have a full
understanding of who has done what and when.

Architecture and Technology Stack

The CCDB is a distributed system based on a classical
client-server model [5] where users access its functionali-
ties remotely through a web-based graphical interface and
external applications access its data through a program-
matic interface. This model – or architecture – is com-
posed of three tiers, namely: Presentation (the layer which
users interact with), Business (the layer which imple-
ments business logic) and Persistence (the layer in which
data is stored and retrieved from). Fig.1 illustrates the
architecture of the CCDB.

Figure 1: Architecture of the CCDB based on three tiers.

Several technologies are employed to implement this

type of architecture guaranteeing that the CCDB is devel-

oped according to user requirements and expectations.

Primordial criteria to select the technologies were that

they had to be open-source, mature, well documented and

actively maintained by the community. With these in

mind, PostgreSQL, a relational database management

system, is used to implement the persistence tier (i.e.

database) of the CCDB. The business tier is implemented

in Java EE running in an application server called Wild-

Fly. It uses Hibernate (a JPA implementation) to access

data from the persistence tier and JAX-RS (a Java API) to

expose data stored in the CCDB through RESTful [6]

services. Finally, the presentation tier (i.e. graphical inter-

face) of the CCDB is based on PrimeFaces, a JSF imple-

mentation.

Data Concepts

The CCDB provides several data concepts which users
can work with to model any controls scenario they may
have in mind. These can be seen as building blocks (à la
LEGO) that can be assembled, fitted, organized and relat-
ed together making it possible to represent the scenarios
in a complete, flexible and hierarchical fashion. The fol-
lowing describes the data concepts that exist in this appli-
cation. Unit: describes a measurement of a physical quanti-

ty, defined and adopted by convention or by law (e.g.

volt, watt, hertz). This is the most elementary con-

cept and is used to further define properties. Enumeration: groups values according to a certain

context or logic (e.g. the ESS lifecycle has several

states which can be grouped as construction, com-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA156

TUPHA156
776

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

mission and operation). This concept is used to fur-

ther define properties. Property: describes a characteristic or attribute (e.g.

manufacturer, model, frequency). This concept is

used to further define device types. Device Type: describes a certain device (e.g. rack,

motor, pump) in an abstract way through properties. Device: instance of a certain device type (e.g.

rack_023, motor_098, pump_171). Container: folder that may contain other containers

and/or slots allowing the creation of hierarchical

models (e.g. BUILDING_2, ROOM_9, LEBT). Slot: placeholder for a specific device to be installed

in which follows ESS naming convention (e.g.

ISRC-1:Ctrl-Rack-1, LEBT-00:Ctrl-IOC-08, LEBT-

00:Ctrl-PS-05). This is the most elaborated concept.

Another important concept in the CCDB, closely relat-
ed with the previous ones, is relationship. This concept
binds containers/slots with other containers/slots accord-
ing to the domain specific logic, modelling the controls
workflow appropriately. Currently, four types of relation-
ships are offered: Contains (e.g. container ROOM_9 con-
tains slot ISRC-1:Ctrl-Rack-1), Controls (e.g. slot LEBT-

00:Ctrl-IOC-08 controls slot LEBT-00:Ctrl-PS-05), Pow-
ers (e.g. slot LEBT-00:Ctrl-PS-05 powers slot LEBT-

00:ISS-Coil-02), and Connects (e.g. slot DTL-30:PBI-
BCM-01 connects to slot DTL-30:PBI-BCM-01FE).

While the first three relationships are explicitly defined
by users, the last one is automatically (and dynamically)
calculated by the CCDB – i.e. users do not have to define
it. This automation is possible thanks to RESTful services
provided by an application called Cable Database [7]
(responsible for managing the information of controls
cables at ESS) and consumed by the CCDB which allows
it to “know” what device connects to what.

Interfaces

As the workhorse for storing and distributing controls-

related information at ESS, the CCDB provides several
interfaces to read/write data from/into it, which are tai-
lored to cope with different needs and levels of expertise.
These interfaces, available to both users and external
applications, are:
 Graphical interface: users can perform CRUD (i.e.

create, read, update and delete) operations in all data

concepts through a web-based interface provided by

the CCDB. This type of interface is ideal when users

need to view information in a user-friendly way,

sometimes remotely, with heterogeneous devices

(e.g. desktop computer, mobile phone), or to make

punctual changes to information. Fig. 2 depicts the

graphical interface of the CCDB (displaying partially

the ESS Ion Source model). EXCEL file: users needing to perform bulk data im-

port into the CCDB may use well-defined EXCEL

files (downloadable from this application) for that

purpose. Moreover, the same EXCEL files are used

by the CCDB to export data, which users can modify

and import back afterwards, thus closing the loop of

bulk operations. RESTful interface: users can programmatically con-

sume RESTful services of the CCDB to develop

scripts and applications. This type of interface is

highly effective as it enables 1) users to tackle spe-

cific needs that cannot easily be solved with neither

of the aforementioned interfaces and 2) external ap-

plications to perform well and guarantee they contin-

ue being lean (by avoiding applications to store data

– already in the CCDB – in their own persistence

layers).

Figure 2: Graphical interface of the CCDB.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA156

Software Technology Evolution
TUPHA156

777

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Ecosystem

A set of applications have been developed (or are under
development) to support both integration and controls
efforts at ESS. Most of these applications are consumers
of the CCDB which, together with producers of the latter,
compose a rich ecosystem that exchange data amongst
them, promoting consumers to (stay) focus in executing
well-defined tasks to solve issues intrinsic to their domain
specific businesses – and delegating the responsibility of
controls data storage, modelling and distribution to the
CCDB. Fig. 3 shows the ecosystem with the CCDB at its
core.

The CCDB has three producers where information is
retrieved from in order to 1) authenticate & authorize
users to perform certain operations or not (RBAC), 2)
name slots in an official and unique way (Naming Ser-
vice), and 3) view connections between devices automati-
cally (Cable Database).

Concerning its consumers, the CCDB currently has two
in production, namely the IOC Factory [8], which gener-
ates and manages IOCs in a lean, quasi-automated way
(by retrieving the list of devices – and the names of EP-
ICS modules needed to interface these – that an IOC
controls from the CCDB), and the PLC Factory [9], which
generates PLC code (by traversing the Controls relation-
ships of a device and checking for attached artifacts to do
search and replace operations). Additional consumers are
under development, e.g., Calibration Service (which re-
trieves calibration coefficients as properties of devices
from the CCDB to calibrate these), or are been considered
such as the Preventive Maintenance Service [10] (which
retrieves the MTBF and threshold values as properties of
devices from the CCDB to notify users when maintenance
of devices is due based on their effective usage and before
becoming non-operational).

Figure 3: Overview of the CCDB ecosystem.

FUTURE DEVELOPMENTS

As the development of controls ramps up at ESS, a sub-
stantial amount of information about devices will need to
be managed by the CCDB. Consequently, the user base of
this application is expected to grow sharply along with
requests for new functionalities. To anticipate some re-
quests, the following (missing) functionalities are candi-
dates for development in the near future: Data authorization: currently the CCDB implements

user authorization at the level of functionality (e.g.

who can add a new property to a certain device type).

While this is most needed, user authorization at the

level of data should be supported as well (e.g. who

can update the value of a property of a certain device

type). Data versioning: although the CCDB has a log func-

tionality that fully tracks all changes (in other words,

who has done what and when), it however does not

let users easily view how the information of, for in-

stance, a certain device evolves over time. Therefore,

it could be beneficial to have a data versioning

mechanism in the CCDB where users could view the

evolution of the information of a device, compare

two temporal versions of the information and, even-

tually, restore a version of interest for production. Data access: at present the CCDB provides 13

RESTful services allowing users to programmatical-

ly get (i.e. read) data stored in it. While these ser-

vices cover all data concepts, they are intentionally

generic, meaning that additional services should be

developed to get data in more specific ways – this

will not only increase performance between the

CCDB and its consumers but also lower the devel-

opment effort required by the latter. New RESTful

services to put (i.e. write) data into the CCDB should

also be developed so that consumers can benefit

from these (this will for instance enable the IOC Fac-

tory, a consumer, to attach the list of PVs in each de-

vice stored in the CCDB after generating an IOC). Data import: while EXCEL files have been created

to enable importing all data concepts in the CCDB, it

may be time consuming to fill-up these files since

they were designed to be as generic as possible.

Therefore, additional EXCEL files to specifically

represent complex devices (e.g. racks) should be cre-

ated to lower both the time and effort users spend in

doing (batch) data import into the CCDB. Data inheritance: in case two (or more) device types

with almost identical properties need to be defined in

the CCDB, users can create one device type, dupli-

cate it (as many times as needed) and modify the

copies to model what they are meant for. While this

approach reduces the time spent in defining similar

device types, it may lead to some difficulties in man-

aging these in the long run. A more natural way to

solve this is through inheritance. Consequently, the

CCDB should provide an inheritance mechanism

where users can define a generic device type (e.g.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA156

TUPHA156
778

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

PLC) and define specific device types (e.g. Siemens

PLC and Schneider PLC) out of this generic type

with some additional properties for each one of

these.

CONCLUSION

The CCDB is in production at ESS since the end of
2015 with satisfactory results. Besides integration labs,
this application already models/stores (partially) the in-
formation of ESS Ion Source, LEBT and MEBT systems,
which users may view through its graphical interface or
use external applications to manage specific issues based
on information retrieved from the CCDB, enabling an
effective integration and control of these systems.

While most users seem to have no difficulties to oper-
ate the CCDB, others do have some in particular when
populating it. The reason for this is not inherent to the
CCDB though but usually due to people lacking of mod-
elling skills or access to relevant information – the latter
being a typical situation found in research facilities in
construction phase such as ESS.

Several interfaces (namely: graphical, EXCEL files im-
porter/exporter, and RESTful) have been developed to
cope with a multitude of requests so that users/external
applications may achieve their goals with minimum effort
imposed by the CCDB.

External applications have been developed to support
both integration and controls efforts at ESS. These are
consumers of the CCDB forming a (logical) ecosystem
with/around it. Instances of existing consumers are the
IOC Factory and the PLC Factory that generates IOCs
and PLC code thanks to information retrieved from the
CCDB. Additional consumers are under development
(e.g. Calibration Service) or under consideration (e.g.
Preventive Maintenance Service) to further enrich this
ecosystem. A neat benefit of this architectural strategy is
that the ecosystem may grow naturally as each of its
members is developed independently, not disrupting or
slowing down the others.

Finally, new functionalities are being envisaged such as
authorization at the level of data, data versioning, new
RESTful services to write data and read data in more
specific ways, additional EXCEL files to import complex
devices, as well as data inheritance. These will substan-
tially improve the CCDB and allow users to profit even
more from its usage.

ACKNOWLEDGEMENT

The authors would like to thank all the people that con-

tributed with ideas and participated in discussions to fur-

ther improve the Controls Configuration Database, in

particular the members of the Hardware and Integration

Group at ESS.

REFERENCES

[1] Controls Configuration Database,
http://openepics.sourceforge.net/configuration

[2] V. Vuppala et al., “Proteus: FRIB Configuration Data-
base”, in Proc. ICALEPCS’13, San Francisco, USA, Octo-
ber 2013, paper TUPPC03.

[3] V. Vuppala et al., “Distributed Information Services for
Control Systems”, in Proc. ICALEPCS’13, San Francisco,
USA, October 2013, paper WECOBA02.

[4] Role Based Access Control,
http://openepics.sourceforge.net/security

[5] Client-server model,
https://en.wikipedia.org/wiki/Client%E2%80%93serve
r_model

[6] R. Fielding, “Architectural Styles and the Design of Net-
work-based Software Architectures”, Ph.D. Dissertation,
University of California, Irvine, 2000.

[7] Cable Database,
http://openepics.sourceforge.net/cables

[8] IOC Factory, http://openepics.sourceforge.net/ioc

[9] G. Ulm et al., “PLC Factory: Automating Routine Tasks in
Large-Scale PLC Software Development”, in Proc.
ICALEPCS’17, Barcelona, Spain, October 2017, paper
TUPHA046.

[10] Preventive Maintenance Service,
http://openepics.sourceforge.net/maintenance

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA156

Software Technology Evolution
TUPHA156

779

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

