
CBNG – THE NEW BUILD TOOL USED TO BUILD
MILLIONS OF LINES OF JAVA CODE AT CERN

L. Cseppentő∗, V. Baggiolini, E. Fejes, Zs. Kővári, N. Stapley, CERN, Geneva, Switzerland

Abstract
A large part of the CERN Accelerator Control System

is written in Java by around 180 developers (software engi-
neers, operators, physicists and hardware specialists). The
codebase contains more than 10 million lines of code, which
are packaged as 1000+ JARs and are deployed as 600+ differ-
ent client/server applications. All this software are produced
using CommonBuild Next Generation (CBNG), an enter-
prise build tool implemented on top of industry standards,
which simplifies and standardizes the way our applications
are built.

CBNG not only includes general build tool features (such
as dependency management, code compilation, test execu-
tion and artifact uploading), but also provides traceability
throughout the software life cycle and makes releases ready
for deployment. The interface is kept as simple as possible:
the users declare the dependencies and the deployment units
of their projects in one file. This article describes the build
process, as well as the design goals, the features, and the
technology behind CBNG.

INTRODUCTION
The work on a Java-based Control System for the LHC

was started in 1998 and the need for a unified build pro-
cess emerged shortly. In 2002, an Ant-based [1] tool,
CommonBuild was introduced for this purpose [2], which
used an Apache JJAR [3]-based repository for dependency
management. Over the years active development on these
products have stopped as new competitors entered the mar-
ket, first Maven [4] and then Gradle [5]. The latter tools
provide an improved, de facto industry standard method for
building Java programs and managing dependencies, which
served as a motivation to look for a replacement.

Table 1: Evolution of Complexity of Java Software

2005 2017
Products 130 1 000
Dependency levels 10 25
Developers 30 180

Nevertheless, over the last decade new requirements have
emerged. The codebase and complexity of the control sys-
tem has grown rapidly (see Table 1) and is now larger
than 10 million lines of code, distributed among more than
1000 projects, written and maintained by 180 developers.
Therefore, the CERN Controls Group decided to keep a cen-
trally maintained, unified build process for Java instead of
having all teams set up their own build procedures. Many
∗ lajos.cseppento@cern.ch

big companies like LinkedIn [6] or Netflix [7] follow the
same approach, whereby a centralised tooling team provides
a modern build tool with company-specific extensions to all
developers to unify the development process and culture.
We chose Gradle, an open-source build automation sys-

tem as the basis to implement CBNG (CommonBuild Next
Generation). CBNG helps developers to avoid duplicat-
ing the same build logic across several projects and save
time by providing them a common continuous integration
(CI)/continuous delivery (CD) pipeline. CBNG also pro-
vides a simplification layer over Gradle, enabling physicists
to focus on physics. Our developers do not have to know
anything about Gradle, by reading a few pages of documen-
tation they are able to create their projects, do development
and push to production. Nonetheless, professional software
developers can still benefit from the advanced built-in Gradle
features.
Finally, yet importantly, the centralised release manage-

ment and the unified build pipeline of CBNG aids mainte-
nance over time. For example, with CBNG it is considerably
easier than with Gradle to explore what the relationship is
across projects, detect which third-party libraries are used
and which are not.

Our tooling team began to investigate modern build tools
in 2011 and started the development of CBNG in 2013. In
the beginning of 2017, the old build system was replaced by
CBNG and by the summer all the 1000 projects were built
by the new tool [8].

DEVELOPMENTWORKFLOW
The development workflow is illustrated in Fig. 1. The de-

veloper either creates a new project in their Eclipse IDE [9] or
checks out an existing project from version control. To start,
they call the bob eclipse command (bob is the command-
line shortcut for CBNG) which reads the project descriptor
(step 1), downloads the dependencies of the project from
the internal Maven repository (in our case JFrog Artifac-
tory [10]) and makes them available to the IDE (step 2).

During local development, the developer typically works
inside the IDE. When they are ready to publish their library
or application, they make sure all code is committed back
to version control and then execute the bob release com-
mand (step 3). This command first asks the user for their
credentials and then triggers the build process on the remote
Release Server. This service downloads the source code and
builds the project. If the build is successful, it uploads the
produced artifacts to Artifactory.

If the developed project is an executable product (a server
or a GUI application), then additional, fully automated steps
take place (step 4). To begin with, all the files are copied

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA163

Software Technology Evolution
TUPHA163

789

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Upl

3. release Maven Repository

Operational Storage

5. run

5. deploy

Release Server

1. clean
 build

 eclipse

6. Manage
Deployment

Links Link Manager servers

consoles

2. dependencies

4. Upload applications

Figure 1: The Development Workflow.

from the Maven repository to the Operational Storage. This
storage is reliable and non-stop available and is accessi-
ble through a HTTP web server, which makes it platform-
independent. GUI applications can be directly started from
here and server applications can be deployed to the target
machine (step 5).

Developers also have the opportunity to upload CI builds,
which are not built by the Release Server, yet the further steps
for end products still take place. This feature enables our
users to benefit from all the features of the pipeline during
development, e.g., share executable candidate versions for
manual testing.
In our environment, operation-ready artifacts can be ac-

cessed using exact version numbers or using PRO links.
These links point to stable product versions that should be
“generally used”. These links are automatically created by
the build system, but the developers can manually change
them on a web interface (step 6).

PROJECT CONFIGURATION AND
DEPENDENCY RESOLUTION

For our projects we use a build-tool independent XML-
based descriptor format which is named product.xml. In
this file, the developer declares the name and the version of
their product and its dependencies as seen in Listing 1.
It is a general enterprise practice to avoid using exact

version numbers in dependency declarations and only use a
version alias (such as PRO for lsa-ext-lhc in the exam-
ple), which is substituted at build time with an exact version.
In this way, the developers do not need to update the depen-
dency declaration in product.xml every time as soon as
the stable version changes, e.g., when a bugfix for an inter-

nal project is re-released1 or when the version of the Spring
Framework is updated once a year. With the version aliases,
we can also guarantee that everyone uses the same version
of a library.

Listing 1: Basic Project Descriptor
<product name="lhc-injseq" version="1.0.0"

directory="lhc/lhc-injseq">
<dependencies>

<dep product="lsa-core-cern" />
<dep product="lsa-ext-lhc"

version="PRO" preferred="true" />

<dep product="slf4j-api" version="NEXT" />
<dep groupId="org.jscience"

product="jscience"
version="4.3.1" />

<dep product="log4j" local="true" />
<dep product="junit" excluded="true" />

</dependencies>
</product>

In our system, several aliases are available but the two
most commonly used are PRO and NEXT:

PRO Refers to a stable, up-to-date, operation-ready version.
If the version is not specified in the product.xml, PRO
is used by default. This alias is typically the latest stable
version (not necessarily the latest available version) and
can be changed at any time by project owners.

1 The maintainers of the libraries ensure that all the changes are backward-
compatible and only such API points are changed or removed which are
not used by any other project.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA163

TUPHA163
790

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

NEXT For internal packages means the latest version, for
third-party packages it is also a manually set version. It
is useful when developers want to test their applications
to work with an upcoming version of a dependency.

While Maven repositories use POM files [11] which de-
fine JARs based on groupId, artifactId, version2 (and
sometimes an optional classifier), CBNGmakes both the
groupId and version fields optional in the product.xml:
the groupId is automatically determined by CBNG and the
default value for version is PRO.

CBNG also allows to distinguish different type of depen-
dencies. For example, test dependencies such as junit are
only needed during test execution and must not be down-
loaded as transitive dependencies of other projects. These
dependencies are marked with excluded="true" in the
product.xml.
A project can also have dependencies which are not re-

quired during compilation, should not be downloaded as
transitive dependencies but must be present during applica-
tion execution. Logger libraries are a good example, where
developers use calls to the SLF4J API which will translate
the log events to a logger implementation present on the class-
path. In the example, Log4j is marked with local="true"
to instruct the pipeline to handle this dependency properly.
Dependency resolution is a challenging topic, especially

as most of our projects have dependency graphs with sev-
eral layers of transitive dependencies and often resolve to
over 100 JARs. For dependency resolution, CBNG uses a
mechanism based on Gradle defaults. Upon dependency
conflict (when two different versions of the same library are
referenced in different parts of the dependency graph) the
algorithm prefers the latest one.

For example, taking a product with two dependencies on
PRO version in the product.xml:

<product name="my-product">
<dependencies>

<dep product="lib1" />
<dep product="lib2" />

</dependencies>
</product>

When the user sends command to CBNG, it first parses
the project descriptor file. In order to perform compilation
or other tasks, CBNG first has to determine the dependency
graph using breadth-first search, which is visualized in Fig. 2:

1. CBNG determines that the PRO version of lib1 is
1.0 and for lib2 it is 2.0 and adds these nodes to the
dependency graph.

2. CBNG detects that lib1 depends on slf4j-api
1.7.21 and lib2 depends on lib3 3.0.

3. CBNG evaluates that slf4j-api 1.7.21 has no de-
pendencies and lib3 depends on slf4j-api 1.7.25.

2 These coordinates are often also referenced as organization-module-
revision in mainly Ivy-based tools.

4. CBNG finds out that slf4j-api 1.7.25 does not
have any dependencies and completes the construction
of the dependency graph.

5. Since at least two version of the same dependency is
present on the dependency graph, conflict resolution is
necessary.

6. During conflict resolution, CBNG prefers the higher
version number of slf4j-api, in this case 1.7.25.

The resolved dependencies will be lib1 1.0, lib2 2.0,
lib3 3.0 and slf4j-api 1.7.25.

Figure 2: Dependency resolution: newer versions are pre-
ferred regardless the place in the dependency tree.

For advanced scenarios, CBNG provide several methods
for developers so they can completely control the dependency
resolution if they need to. For example, if the developer
specifies an exact version that version will be forced and
alias versions can be forced with the preferred="true"
attribute. Dependency exclusion is also supported similarly
as it can be done in Maven and Gradle.

BUILD EXECUTION AND RELEASE
When the developer calls the bob build command, the

project is compiled, artifacts are generated and verification
tasks are carried out. If compilation was successful, CBNG
generates three JAR files from the code: a JAR containing
the .class files, a JAR with the source code and another
JAR with the javadoc documentation. If the project is an
end user GUI application, the JNLP files are also created in
this stage.

After that, CBNG executes the tests with JUnit. Test exe-
cution is parallel by default to provide faster build results,
but the developer can disable parallelism. Optionally, it anal-
yses test coverage using JaCoCo and runs static analysis with

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA163

Software Technology Evolution
TUPHA163

791

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

SonarQube. CBNG supports these tools out-of-the-box and
developers only need to call the corresponding commands,
e.g., bob coverage or bob sonar. We integrated these
commands in CBNG to avoid that every developer has to
add the same few lines of plugin configuration to each their
Gradle buildfiles.
The upload of a CI build or a release starts with POM

file generation. This file declares the Maven coordinates
and the dependencies of the project. CBNG also adds extra
information for traceability to the POM file, such reference
to the version control system, build host, build time, user-
name, JDK version and CBNG version. Afterwards the
POM file and all the JAR and JNLP files are uploaded to
Artifactory. Finally, CBNG copies runnable applications
from Artifactory to the Operational Storage.
Releases can be only produced by the Release Server.

When the user calls the bob release command on their
local machine, CBNG triggers the release on a dedicated Re-
lease Server which downloads the source code and performs
a build in a clean environment. In this way there is no risk
that the uncommitted files in the local environment of the
user “pollute” the produced artifacts or affect compilation
and test execution. If the build is successful, the Release
Server tags the released code in the version control system
and also adds the result of the dependency resolution to this
tag. Thus, all releases are traceable and reproducible in the
future even if the PRO version links of dependencies change
over time.

USER EXPERIENCE
Apart from the simplified project and dependency decla-

ration, CBNG provides other user experience improvements
over Gradle. These enhancements are usually simple and
were easy to put into action, yet resulted in a noticeable drop
in the number of support requests and probably spared time
for the developers.
By default Gradle produces a lot of log messages dur-

ing a build execution. To facilitate troubleshooting upon
build failure, CBNG displays a summary log after the build
has finished which aggregates all the warnings and errors
encountered during execution.

In addition, based on our support requests, CBNG comes
with several error-detection patterns and upon a failure sug-
gest the user “what do to next” as it can be seen in Listing 2.
For example, test execution is parallel by default, but it was
not the case in the old build system. Parallel test execution
may fail if the test are not isolated. If parallelism is turned
on, but a test fails CBNG hints to the user to turn this feature
off.
If a build is successful, CBNG also prints extra informa-

tion about the public changes affected by a release or a CI
build as shown in Listing 3. This summary contains links to
the uploaded files and the the changes to the alias versions.

Listing 2: Example for Troubleshooting Hints

Summary of warnings and errors

:test
- Try turning off the parallel execution

with the maxParallelForks=1 property
in case the tests are not completely
isolated

BUILD FAILED

Listing 3: Example for Build Result Summary

Summary of build results

:release
- Artifacts:

http://artifactory/[...]/lhc-injseq/1.1.0
- JNLP:

http://op-store/[...]/PRO/lhc-injseq.jnlp
- PRO of lhc-injseq was updated to 1.1.0

BUILD SUCCESSFUL

Figure 3: CBNG panel in Eclipse IDE.

CBNG also has its own Eclipse plugin (inspired by the
Ant Eclipse plugin), displayed in an IDE panel as shown in
Fig. 3. The developer simply drags and drops a project into
the view and the plugin adds common CBNG commands
and parameters. This view allows the user to run CBNG
without opening a console. Over the years, we found this
panel simpler and cleaner than the publicly available Gradle
views for Eclipse.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA163

TUPHA163
792

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

FUTUREWORK
For the next year, the main goal is to enable developers

to build subsystems which consist of several projects in a
simpler and faster way to reduce the CI feedback time.

Multi-project Builds
It is common that the components of a server application

are implemented among several projects, which declare de-
pendencies on each other. In the current ecosystem, these
projects are built and released one by one. However, by
creating a multi-project (sometimes called multi-module)
build among the components, all the units could be first built
locally, then all the files could be uploaded in one step during
the release procedure. This feature is supported by Gradle
out-of-the box, however, due to the customized dependency
resolution and POM generation the default behaviour pro-
duces invalid results. In order to make it work, we need to
extend these customisations.

Build Promotion
The current pipeline supports to create CI builds and pro-

duction releases in parallel, but does not prove a way to
push a tested, well-working CI build to production. In prac-
tice, it means that after a development team has performed
end-to-end tests on a development version, they would have
to rebuild the project in release mode and re-run verifica-
tion. We plan to provide a clean environment similar to the
Release Server, which is able to create promotable CI builds.

Gradle Build Cache
Gradle has received recently a build cache feature, which

hashes all the inputs of several build steps and stores their
result. Developers and CI agents can share the same remote
cache. When a project is built the first time, the results are
stored on a remote server. The results of subsequent are
simply fetched from the remote server if the input has not
changed. According to reports from the Gradle team, build
time can be reduced by 25% [12].

CONCLUSION
CBNG has proven itself being a stable and modern build

tool able to build controls software written in Java for the
upcoming years. It was a big step towards how other com-
panies build Java software. The evolved pipeline enables
developers to only use a few commands to get their applica-
tion pushed to production. In the end, Gradle turned out as
an excellent choice for satisfying our requirements.

REFERENCES
[1] Apache Ant,

https://ant.apache.org

[2] G. Kruk et al., “Development Process of Accelerator Controls
Software”, in Proc. ICALEPCS’05, Geneva, Switzerland,
Oct. 2005, paper FR_5-6O

[3] JJAR: Jakarta JAR Archive Repository,
https://commons.apache.org/dormant/jjar

[4] Apache Maven Project,
https://maven.apache.org

[5] Gradle Build Tool,
https://gradle.org

[6] S. Faber, “Building Great Tools for Developers at LinkedIn,
with Gradle, 6 Years in a Row”, Gradle Summit 2017, Palo
Alto, CA, USA, Jun. 2017,
https://summit.gradle.com/session/39273

[7] M. McGarr, “Dependencies, Distributed Code and Engineer-
ing Velocity”, Gradle Summit 2017, Palo Alto, CA, USA,
Jun. 2017,
https://summit.gradle.com/session/39245

[8] E. Fejes, “Adapting Gradle for the CERN Accelerator Con-
trol System”, Gradle Summit 2017, Palo Alto, CA, USA,
Jun. 2017,
https://summit.gradle.com/session/39268

[9] Eclipse IDE,
http://eclipse.org

[10] Artifactory – Universal Artifact Repository Manager,
https://www.jfrog.com/artifactory

[11] Maven POM Reference,
https://maven.apache.org/pom.html

[12] Introducing the Gradle Build Cache,
https://blog.gradle.org/
introducing-gradle-build-cache

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA163

Software Technology Evolution
TUPHA163

793

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

