
NEW DEVELOPMENTS FOR THE TANGO ALARM SYSTEM

G. Scalamera, L. Pivetta1, Elettra-Sincrotrone Trieste, Trieste, Italy
S. Rubio-Manrique, ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Barcelona, Spain

1also at SKA Organisation, Macclesfield, UK

Abstract
The TANGO Alarm System, based on an efficient

event-driven, highly configurable rule-based engine
named AlarmHandler, has undergone a deep refactoring.
The dedicated MySQL database has been dropped; the
TANGO database now stores all the configuration
whereas the HDB++ historical database keeps all the
alarms history. Correlating alarms with any other
engineering data is now much simpler. A dynamic
attribute is provided for each alarm rule; this allows to
easily build a hierarchy of AlarmHandlers. The
AlarmHandler manages Attribute quality in the alarm
rules and provides possible exceptions resulting in alarm
evaluation. Mathematical functions, such as sin, cos, pow,
min, max and ternary conditionals are available in the
alarm formulae. The TANGO AlarmHandler device server
is now based on the IEC 62682 standard.

INTRODUCTION

An alarm system is a tool that allows to notify operators
of abnormal process condition or equipment
malfunctions. The alarm system plays a central role in
increasing uptime and overall service quality in the
control systems of the Elettra and FERMI accelerators. In
particular, the alarm system allows operators to be early
notified of possible major faults, and to take the necessary
action to prevent them.

Building on the experience matured during several
years of use, with thousands of alarms deployed, a
number of improvements and new functionalities for the
TANGO alarm system have been designed and
implemented.

EVOLUTION OF THE TANGO ALARM
SYSTEM

The first alarm system for TANGO has been developed
at Elettra in 2004 [1]. The main requirements identified
were:

• easily configurable at runtime

• support for complex alarm rules, with logical, binary,

mathematical operators and functions
• support for alarm rules based on values gathered

from multiple subsystems
• consistency of alarm states between multiple clients.

Named Alarm Collector, the TANGO device was
designed to be completely asynchronous, exploiting the
freshly added publish/subscribe support in TANGO.
Every attribute involved in the formula is subscribed for
the change event; when the Alarm Collector receives a
new event, the evaluation of all the matching alarm
formulae is triggered. The state of alarms was exposed to
clients as an array of strings, containing all the necessary
information: the actual condition of the alarm, the

acknowledge flag, the timestamp, the severity, the group
and the optional message associated to the alarm.

During 2008 the Alarm System undergo the first
refactoring. GNU Flex and Bison, used as lexical scanner
and parser, have been replaced with a novel parser
developed with the Spirit Parser Framework [2], an object
oriented recursive descendent parser generator
implemented using template meta-programming
techniques. As part of the Boost libraries, the Spirit Parser
is written in C++, and use operator overloading to
compose parser objects. The alarm parser has been
implemented to build an Abstract Syntax Tree (AST) as
the result of the parsing of the formula. Thus, each alarm
rule is parsed only once at device initialization, and the
evaluation is done using the AST, that results in better
performance.

Furthermore, the capability to store the history of
alarms, including the state and message, into a dedicated
MySQL database has been added. The original schema
included two tables: the ‘description’ table, to store the
configuration, and the ‘alarms’ table, keeping track of the
alarm history.

The possibility to execute a TANGO command as the
alarm condition changes has been added. Two different
commands can be configured, the first to be executed
when the alarm condition changes from NORMAL to
ACTIVE, the second when it changes from ACTIVE to
NORMAL. The commands may have no input parameter
or DevString input parameter. In the second case, the
DevString is filled with the alarm name, group, message
and the values that triggered the alarm condition using a
‘key=value;’ representation.

Also, the support to email notification triggered by
alarm state change has been added. A new TANGO
Device, named AlarmMail, has been developed in Python,
providing mailing capabilities. This device provides a
phonebook and a mailing list that can be associated to
alarm groups. The commands SendAlarm and
SendNormal, which accept a DevString argument, allow
to send emails reporting an alarm or a normal notification.
These commands can be configured as the actions to be
triggered by the alarms to provide email notification.

DESIGN GUIDELINES

A number of requirements has been taken into account
during the design phase of the deep refactoring of the
alarm system:

• drop the dedicated MySQL database used to store the

configuration and the history
• save the alarm configuration in the TANGO DB

• save the alarm history using HDB++ [3]

• use the state of an alarm in the formula of another

alarm
• comply to the IEC 62682:2014 standard

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA165

Software Technology Evolution
TUPHA165

797

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

• extend the formula parser to support more

mathematical and logical functions
• disable/enable alarms at runtime

• share, if possible, a common set of interfaces and

functionalities with PyAlarm (PANIC’s device
server) [4], allowing to use the PANIC GUI.

ALARMHANDLER

The new device server, core of the alarm system, has
been named AlarmHandler.

Interface

One of the key functions in the upgrade of the TANGO
Alarm System is to create one dynamic attribute for each
alarm rule. The attribute allows to asynchronously notify
clients interested in alarm changes, with the granularity of
one alarm. In fact, every attribute representing an alarm
can push events when its state changes. Clients can
subscribe for the events of the alarm attributes they are
interested into, or all the alarm attributes, and be notified
asynchronously. Clients can be graphical user interfaces,
notifiers, other AlarmHandlers or any TANGO device in
general.

To code useful information in the alarm attributes, the
IEC 62682:2014 [5] standard has been adopted: the alarm
attribute is a DevEnum TANGO data type and the
possible values are NORM, UNACK, ACKED, RTNUN,
SHLVD, DSUPR, OOSRV. Thus, the alarm attribute, in
addition to the basic normal/abnormal process condition
information, also carries the information whether the
alarm is acknowledged and enabled. Furthermore, the
quality of the attribute can be consistent with the quality
of attributes involved in the formula, and an exception can
be thrown in case the formula cannot be evaluated.
Exceptions, in fact, can occur for multiple reasons, being
generated by the TANGO attributes in the formula or by
the parser.

To support shelved (SHLVD) and out-of-service
(OOSRV) alarm values, some commands have been
added to the AlarmHandler device. The Disable command
permanently disables an alarm, until the Enable command
is issued. The Shelve command temporarily disables an
alarm, and its evaluation and notification, until the
configured shelve time expires or Enable command is
issued.

An additional attribute, named alarmSummary, has
been implemented containing all the alarms information
represented as an array of strings, one string for each
alarm configured in the AlarmHandler. The strings are
formatted using a ‘key=value;’ syntax, as in the following
example:

‘tag=alm_name;state=NORM;priority=FAULT;time=
2017-10-10 16:45:00.000;formula=(a/b/c/d==ON);
message=msg’.

This allows graphical user interfaces interested in
managing all the alarms configured in one or more
AlarmHandlers to easily retrieve the whole bunch of
information.

Moreover, to retrieve the detailed state information of a
single alarm, the command GetAlarmInfo has been

implemented. Additional information is returned, such as
attribute quality, alarm counters, groups and attribute
values. Attribute values, in particular, contain all the
attribute values, or exceptions, resulting from the last
evaluation of the formula, coded as a JSON string. A
replacement of the alarmSummary attribute and
GetAlarmInfo command with an implementation based on
a TANGO DevPipe, introduced since Tango 9, is under
evaluation.

Alarm Configuration and Alarm History

The original TANGO alarm system used a dedicated
MySQL database to store alarm configuration and alarm
history. This additional component can possibly be
avoided, since the configuration can be stored into the
TANGO database, and, with the new dynamic attribute
design, the alarm history into the TANGO historical
database.

Since the new design provides one attribute for each
alarm, Attribute Properties are the best place to store the
configuration: for every alarm attribute, the properties to
store the formula, the message and all the other optional
parameters can be easily created and managed with Jive,
as shown in Fig. 1, or programmatically.

Figure 1: Configuration in attribute properties.

In the AlarmHandler device, the alarm dynamic
attributes are configured to push events every time the
attribute value changes; they can be easily, and suitably,
archived using HDB++, taking advantage of the existing
tool. Thus, the alarms history can be easily correlated
with any other data archived with HDB++. Figure 2
shows the correlation between the state of an alarm and
the value of one attribute used in the alarm formula. The
specific configuration is the one shown in Fig. 1 for the
alarm archiving_hdbpp_mod, which requires
archiving/hdb++archiver2/mod/attributeNokNumber
to be greater than zero for more than 20 seconds
(on_delay property). Shelved time is 60 seconds.In
particular, the following 4 situations can be seen in Fig. 2:
(1) After 20 seconds of abnormal process condition, the
alarm state changes to UNACK, then the Acknowledge
command is issued; then the process condition returns to
normal.
(2) After 20 seconds of abnormal process condition the
alarm state changes to UNACK, then when the process

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA165

TUPHA165
798

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

condition returns to normal the alarm state changes to
RTNUN, and after the Acknowledge command to NORM.
(3) After the Shelve command the status of the process is
ignored; after 60 seconds (shlvd_time property) the state
returns to NORM.
(4) After the Disable command the status of the process
condition is ignored, until the Enable command is issued.

Alarm Formula

Some work has been done to extend the parser and
support more predicates. The mathematical functions
‘sin’, ‘cos’, ‘pow’, ‘min’, ‘max’ are now supported.
Adding additional mathematical functions is easy and can
be done whenever a new requirement arise.

The support for ternary conditionals has been
implemented, with the following syntax: (expr1 ? expr2 :
expr3). If expr1 evaluates to true than expr2 is evaluated,
otherwise expr3 is evaluated.

Also, support for the quality of attributes has been
added to the parser. Now it is possible to use the syntax
name/of/device/attr.quality in formulae, and it evaluates as
the integer number of the DevEnum quality. Furthermore,
the syntax ‘quality(expression involving attributes)’ is
allowed and evaluates as the combination of the quality of
attributes in the expression. The result will be:

• INVALID if at least one attribute is invalid

• otherwise, ALARM if at least one attribute is in alarm

• otherwise, WARNING if at least one attribute is in

warning
• otherwise, CHANGING if at least one is changing

• otherwise it is VALID.

To simplify the use of alarm attributes in another alarm
formula the following syntax is supported:

• name/of/device/almattr.alarm, which evaluates true if

it is equal to UNACK or ACK
• name/of/device/almattr.normal, which evaluates true

if it is equal to NORM or RTNUN
With one attribute for each alarm, and the additional

syntax described above, it is possible to build a hierarchy
of AlarmHandlers as depicted in Fig. 3.

Figure 3: AlarmHandlers hierarchy.

PERFORMANCE

Currently one instance of the novel AlarmHandler
device is under test at Elettra. Almost 1000 alarms are
configured, with very different number of attributes
involved in the formula, spanning from just one to more
that 30. Alarms have been evaluated ~10000 times in ten
minutes of execution. An alarmFrequency attribute has
been implemented that returns the number of times each
alarm has been evaluated; the distribution for the test
described above, shown in Fig. 4, has a peak of ~200
evaluations for one alarm.

Figure 4: Number of times each alarm has been evaluated
in 10 minutes.

Some attributes in the Elettra/FERMI control systems
are configured to push events 50 times per second: in no
case events are missed, and alarm formulae are always
evaluated when triggered.

The CPU load of the AlarmHandler is comparable to
the load of similar device servers running on the same
machine. In details, the CPU load is not more than 1%
when no polling is configured on the device, when
running on a virtual machine configured to use 8 cores
and 4 GB of RAM. The hardware running virtual
machines is a recent industrial PC with Intel Xeon CPU,
model E5-260 v2, with a 2.60 GHz clock. Around 200

Figure 2: HDB++ history plot of one attribute (blue line)
and of the alarm depending on its value (black line). It is
possible to see the effect of the Ack, Shelve and Disable
commands in different conditions.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA165

Software Technology Evolution
TUPHA165

799

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

TANGO device servers, mostly written in C++ and some
in Python, are running on the same virtual machine, and
the global CPU usage is reported to be idle for more than
90% of the time.

PANIC INTEGRATION

A comparative analysis of the existing Elettra Alarm
System and PANIC [6], the Python-based Alarm System
developed at Alba, has been carried out. The minimum set
of functionalities to be supported, and the common API
for clients have been identified, and are reported in
Table 1, together with the current implementation in the
two tools.

Table 1: AlarmHandler-PyAlarm Comparison

AlarmHandler PyAlarm

Alarm
configuration

Attribute properties
Device/Class/free

properties

Alarm
attribute
names

“name”, “formula”,
“level”, “message”

“tag_name”, “formula”,
“severity”, “description”

Alarm
grouping
method

grouped using
“group” alarm

property

grouped separating
alarms belonging to
different groups in
different PyAlarm

instances

Alarm actions
and
notifications

properties
“on_command” and

“off_command”
used to specify

commands to be
executed in the
NORMAL ->
ACTIVE and
ACTIVE->
NORMAL
transitions.

These commands
can be used to send
email notifications.

property “receivers” that
can be: ACTION, an

email address or a phone
number.

ACTION(state,
expression) is used to
execute the expression
(sending commands or
writing atributes) when

the state specified is
reached.

Email address or a phone
number are used to send

notifications on every
alarm state change.

Interface:
enum values

NORM, UNACK,
ACKED, RTNUN,
SHLVD, DSUPR,

OOSRV

boolean attributes

Interface:
attributes and
commands

one DevEnum
attribute per alarm +
one string array per

each alarm state
with the list of

alarms in that state

one bool attribute per
alarm + string arrays

with coded information
in it and list of alarms in

that state

A study, with the purpose of providing some
commonalities between the two alarm system
implementations, is ongoing. With the pre-requisite to be
compliant to the IEC 62682:2014 standard, a first analysis
lead to the following results:

• AlarmHandler and PyAlarm store the alarm

configuration in different ways, but this does not
affect the functionality

• alarm attributes names need to be shared; the

following minimal common set has been defined,
according to the standard: “tag”, “formula”,
“priority”, “message”

• both grouping method should be supported: using a

‘group’ alarm attribute and separating alarms in
different AlarmHandler devices

• AlarmHandler needs to support a more general

“annunciators” property than just
“on_command”/”off_command”; a syntax like the
one supported by PyAlarm should be implemented in
order allow actions and notifications on every state
transition

• PyAlarm needs to support the same enum values and

labels defined by the IEC 62682:2014 standard for
dynamic alarm attributes, as AlarmHandler do

• To support generic alarm GUIs both systems provide

the alarmSummary attribute and the GetAlarmInfo
command.

CONCLUSION

Refactoring the TANGO Alarm System improved
performance and functionalities, and aligned the tool to a
well established international standard. Moreover, the
TANGO collaboration will benefit from the
standardisation effort between the AlarmHandler and
PyAlarm, a work that has just started and will continue
with the integration of additional functionalities. The
upgrade of the Alarm graphical user interface developed
at Elettra, base on QT, is also foreseen.

REFERENCES

[1] L. Pivetta, “Development of the Tango Alarm System”,
ICALEPCS’05, Geneva, Switzerland (2005), WE3B.1-70

[2] The Boost.Spirit Library, http://boost-spirit.com

[3] L. Pivetta et al., “HDB++: a new archiving system for
Tango”, ICALEPCS’15, Melbourne, Australia (2015), WED3O04

[4] S. Rubio-Manrique et al., “Extending alarm handling in
Tango”, ICALEPCS’11, Grenoble, France (2011), MOMMU001

[5] “Management of alarms systems for the process
industries”, IEC 62682 (2014)

[6] S. Rubio-Manrique et al., “PANIC and the Evolution of
Tango Alarm Handlers”, ICALEPCS’17, Barcelona, Spain
(2017), TUBPL03

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA165

TUPHA165
800

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

