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Abstract
Nowadays, modern accelerators are starting to use virtu-

alization to implement their control systems. Following this
idea, one of the possibilities is to use containers. Contain-
ers are highly scalable, easy to produce/reproduce, easy to
share, resilient, elastic and low cost in terms of computa-
tional resources. All of those are characteristics that fit with
the necessities of a well defined and versatile control system.
In this paper, a control structure based on this paradigm is
discussed. Firstly, the technologies available for this task
are briefly compared, starting from containerizing tools and
following with the container orchestration technologies. As
a result, Kubernetes and Docker are selected. Then, the ba-
sis of Kubernetes/Docker and how it fits into the control of
an accelerator is stated. Following the control applications
suitable to be containerized are analyzed: electronic log sys-
tems, archiving engines, middleware servers, etc. Finally,
a particular structure for an accelerator based on EPICS as
middleware is sketched.

INTRODUCTION
Virtualization technology1 has became a standard in many

fields related to the IT. Especially, at DevOps and Cloud ser-
vices. This standardization and the benefits it provides has
cause its adoption in other areas. In the large facilities field,
there are being efforts on this direction. As an example
Virtual Machines (VMs) are used at [1–3] for software stan-
dardization and maintaining. At [4–6] the authors add High
Availability (HA) and resources optimization to the control
system using also VMs. In conclusion, the use of virtual-
ization provides benefits to the control system architecture.
We can state that a good control system architecture for a
large facility should be maintainable, robust, easy to scale
and efficient:

• Maintainable. A good architecture should be easy to de-
scribe and deploy automatically. It needs to be based on
a limited number of standards and reliable technologies.
Those technologies should be proven and tested, sup-
ported and maintained by a vendor or a community or
both, being positive if they are easy to share. Moreover,
the system must be prepared to fit new technological
challenges.

• Robust. The control system must have an agile and
secure response to fault events, including fault tolerance
early error detection and fast recovery.

∗ inigo.arredondo@ehu.eus
1 Note that the scope of this paper evolves very rapidly, so a lot of infor-
mation is not yet available through peer reviewed papers. Consequently,
some of the references and the information is taken from specialized
webpages.

• Easy to scale. Adding new elements and plant changes
to accomplish control system upgrades.

• Efficient. Use the resources efficiently and maintain
low energy consumption.

Additionally, taking into account the very particular neces-
sities for large scientific facilities, the use of open source
technologies is very valuable.
Virtualization with VMs cover almost all of these char-

acteristics, facilitating the maintenance of large control sys-
tems. However, as reported in [4,6], they need a long period
for recovery from serious faults as machine crash. Also, they
do not use the machines resources in the most efficient way,
because they need to implement an Hypervisor for every
VM.

On the other hand, Container based virtualization covers
the control system requirements, using the resources in a
more efficient way. Moreover, the use of containers in com-
bination with a container orchestration tool can overcome
also the slow fault recovery. This work discusses the appli-
cation of containerized solutions in accelerators, analyzing
the existing solutions and a possible valid architecture.
It is worth stating that low level control system does not

fit with the mainstream containerization philosophy. It is
more focused on Cloud and microservices. However, there
are efforts focused on that, as in [7].

CONTAINERIZATION
Containerization (or operating system-level virtualization)

is a method of virtualization that enables a layer of isolation
creating different user-spaces instances in the same kernel.

There are different container technologies: Docker, LXC,
OpenVZ, BSD Jails, Solaris Zones, Turbo, etc2. Most of
the large scientific facilities (LHC, ITER, SNS, CHSNS,
KEK,...) relay on Linux as their main Operating System, so
we will focus the discussion on Linux based containers.

In Linux, containerization is based on the creation of user-
spaces instances, at the kernel level. It is done via two kernel
components: namespaces and cgroups. Namespaces divide
the operating system into virtual segments. While cgroups
can apply constraints, or limitations, to system resources [8].
Among the containers based on Linux, the most popular

are: Docker, Flockport (LXC) and Rocket (rkt).
In [9] the authors compare mainly Docker and LXC stating

that Docker is better at computation time, memory through-
put and network I/O performance. While LXC is better at
Disk I/O performance.

Both of them report no over-heads on memory utilization
or CPU, whilst I/O and operating system interactions in-
curred some ones. That means, as expected, that containers
are a good lightweight option for virtualization.
2 https://en.wikipedia.org/wiki/Operating-system-level_virtualization

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA170

TUPHA170
816

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



On the other hand, both rkt and Docker evolve quickly and
since 2017 both are Cloud Native Computing Foundation3
incubation projects4. They have some technical differences
that mainly concern to bootstrapping and security. Although
there are opinions in favor of both of them, we have not
found any peer reviewed reference comparing thoroughly
the two technologies. It is worth mentioning that rkt engine
can manage also Docker containers.
In this paper, our purpose is to focus, mainly, on the ac-

celerators control services that are not a critical part of the
operation. This means that we do not need a data fast pro-
cessing. Consequently, the election of the technology will
be lead by parameters like ease of utilization, support, active
development, compatibility with orchestration tools, etc.

Based on these parameters, in our opinion the best option
is Docker. Nowadays, it is the most used technology, it has
a company and a very active community support, it is being
released regularly and it is the base of the major container
orchestration tools.

Containers vs VMs
As we stated at the introduction most of the efforts done

towards control systems virtualization have been performed
using VMs. However, comparing the performance between
VMs and Containers , we can conclude that Containers fit
better with the implementation of some function of a control
system for a large facility,.

From [10–13], the main benefits of each solution can thus
be summarized:

• Benefits of containers:

– Fast application delivery: Maintenance and up-
date.

– Better scaling: In case of more resources need.
About 22 times better than VMs.

– More rapid spawning and termination.

– Better resource utilization (lightweight). Higher
workloads with grater density. Containers are
able to run multiple isolated processes in a host
without the overhead caused by the Hypervisor
layers introduced by VMs.

• Benefits of VMs:

– Better compatibility and isolation.

– More robust that containers.

Most of the papers cited in the introduction state that one of
the major benefits of VM virtualization is the optimization
of resources. Using containers this will be considerably
improved. The other benefits, such as scaling or HA still
being achieved using containers.

3 https://www.cncf.io/
4 https://thenewstack.io/separate-votes-cncf-adopts-dockers-containerd-
coreos-rkt/

On the other hand, one of the most important drawbacks
of the VM virtualization is the Host crash. Containers are
more fragile than VMs so a crash of any container can be
fatal. However, this issue can be improved managing the sys-
tem with a container orchestration tool. Thanks to the rapid
spawning and ease of provisioning of containers, the orches-
tration tool can rebuild the system fast and automatically in
any machine of the cluster.

Recently, containers are under use and experimentation
in large scientific facilities. This fact can be observed in the
Docker Hub5, where the number of containers related with
large facilities such as EPICS and other common tools is
growing.

ORCHESTRATION
In a large scientific facility it is not enough with manag-

ing containers manually. When a wide range of containers
needs to be run in several physical machines with the con-
straints imposed by a production environment, a container
orchestration tool becomes essential.

A good container orchestration software needs to provide:

• Provisioning: It is able to provide and launch containers
in an orderly way. This means to choose the appropri-
ate node based on the available resources and user’s
restrictions.

• Configuration-as-text: It is possible to define the struc-
ture of the cluster using text files. This eases the edition,
versioning and sharing.

• Monitoring: Within the framework it has a tool to check
the health of the containers in the cluster.

• Rolling Upgrades and Rollback: It includes the op-
portunity of upgrading the system incrementally. So
instead of changing the version of the whole system
at once, they provide a way to automate the change
step by step. This allows the maintainers to check the
correct functioning of the new release. In case of a bad
behavior, an automated rollback is also possible.

• Policies for Placement, Scalability etc. : As introduced
in the provisioning feature, these tools fetch the optimal
placement for the containers based on cluster metrics
(load balancing). They also provide high availability
tools and automatic scaling if unused resources are
available. Note that this feature can solve the prob-
lems of robustness of the containers vs VMs in many
applications due to the rapid spawning of containers.

• Service Discovery: Containers expose services through
a network, hence the service discovery is one of the key
features of these tools.

5 https://hub.docker.com/
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• Ease of Administration: The orchestration tools need
to be integrated with the other systems of the IT infras-
tructure. Consequently the have to be easy to deploy,
configure and maintain.

These features fit very well with the characteristics of a good
control system summarized at the introduction of this paper.

Nowadays, the most relevant container orchestration sys-
tems are6:

• Kubernetes (k8s): Kubernetes is an orchestration sys-
tem for Docker and Rocket containers. It automates the
deployment, scaling and management based on user-
defined parameters.

• Mesosphere Marathon: Marathon is a LXC and Docker
container orchestration framework for Apache Mesos.7

• Docker Swarm: Docker Swarm provides native cluster-
ing for Docker containers.

A lot of reports can be found comparing these three options
(mainly web). We can summarize that:

• Kubernetes: Very good and proven open source tool
for medium-large clusters. It is being developed by a
large and active community. It is managed by the Cloud
Native Computing Foundation and has support of com-
panies like Amazon, CoreOS, Mesosphere, Samsung,
Microsoft, Red Hat, IBM, Intel, Oracle, Docker, Cisco,
Google,...

• Swarm: It provides the best Docker compatibility and
it is easy to use. It is preferred for no very large clusters.
Also open source.

• Mesos: It is a well proven open source tool (Twitter,
eBay, Netflix,...). Designed and tested for very large
clusters.

Table 1 shows how high profile companies are interested
in container orchestration tools. Particularly, all of them
provide infrastructure for k8s.

Control systems of large scientific facilities will need to
run robust medium-large scale clusters. Therefore, Kuber-
netes and Mesosphere are preferred.
In addition, particular needs of accelerators can differ

from the mainstream use of the container orchestrators, thus
specialized tools may be built. For this reason, we consider
that Kubernetes is the best option due to the large and active
community behind it.
6 https://www.infoworld.com/article/3205304/containers/orchestration-
tools-enable-companies-to-fully-exploit-linux-container-
technology.html

https://www.sdxcentral.com/articles/news/kubernetes-swarm-and-
mesos-central-in-container-orchestration-space/2017/07/

7 It is possible to run Kubernetes on top of Mesos.

Table 1: Orchestration Tools Provided as a Service by Se-
lected Companies

k8s Mesos Swarm
Alibaba Cloud

Container Service
� �

Amazon EC2
Container Service

� � �

Microsoft Azure
Container Service

� � �

Google Container
Engine

�

IBM Bluemix
Container Service

�

Node 1

Pod 1

Container n

Container 1

Pod N

Container n

Container 1

Kubelet Proxy

Node N

Pod 1

Container n

Container 1

Pod N

Container n

Container 1

Kubelet Proxy

Master

Etcd
API

Server

Controller

Manager Server

Figure 1: Kubernetes architecture.

Kubernetes
In this section wewill describe very briefly the Kubernetes

architecture [14] that is presented in Figure 1.
A Kubernetes cluster is composed by Masters and Nodes.

The firsts ones run specific software to rule the others. The
best way to understand their roles is describing the software
they execute.

• Masters:

– API Server: Both masters and nodes make API
calls to perform their tasks. These are handled by
the API server.

– Etcd: It is a service to keep and replicate the
configuration and run state of the cluster.

– Scheduler and Controller Manager: They are in
charge of scheduling containers onto nodes. They
also ensure the amount of them that have to be
running.

• Nodes:

– Kubelet: A daemon that obey the instructions
from the master. It includes, create, destroy and
monitor the containers on the node.

– Proxy: A network proxy to isolate the name of
the service provided by the container from the IP
address of this container.
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– cAdvisor (optional): A daemon to provide statis-
tics about the running containers.

Additionally, the management of the containers and the as-
sociated infrastructure is composed by the following items.

• Pods: The containers are packed into Pods. In this way
related containers can share resources easily. Also, if
some services are dependent to each other, it is pos-
sible to create/destroy all at once. This improve the
management.

• Replication Controllers: One of the main character-
istics of the orchestration tools is to maintain a user
defined number of containers (Pods) running. In this
manner, the high availability is granted. Kubernetes
automatically create/destroy Pod replicas in case of
failure. Besides, it generate the replicas taking into
account the statistics of the nodes to improve the re-
sources utilization of the cluster. All this is carried out
by the replication controllers.

• Services: Any Pod can be created in any node of the
cluster and have a self assigned IP. Therefore, we need
a way to separate the service itself from the particular
situation of the containers. This is performed by the
services.

• Volumes: They are virtual file systems defined at the
Pod level.

• Labels: They are a key/value pairs to name Kubernetes
objects. The main objective is to be able to organize
the cluster by using them.

Kubernetes includes all the features stated for a good orches-
tration tool. In consequence, by means of Kubernetes we
can design a control system that fits with the specifications
given in the introduction.

It is important to mention that in [14], the author report a
de-registration / eviction / replacement / registration cycle
of a Kubernetes Pod on the order of 300 milliseconds. And
he states that the same process to replace a running VM
instance behind a load balancer is almost always on the
order of minutes.

This fact is very important to avoid one of the main draw-
backs of using virtualization in the control systems. With
Kubernetes if any machine crashes, their services will be
automatically replicated to another machine within a few
seconds.

CONTAINER BASED CONTROL
ARCHITECTURE

As stated at the introduction this paper is focused on man-
aging non critical services of the control system. These
include alarm handlers, data archivers, electronic logs,
LDAP services, slow non critical controls and user in-
terface managers. Those services containerized using
Docker/Kubernetes can be a useful alternative applicable in

EPICS 

service

e-logbook

service

Other 

services

Persistent

Storage

Master 1 Master N

Node N

Pod 1

Container n

Container 1

Pod N

Container n

Container 1

Node 1

Pod 1

Container n

Container 1

Pod N

Container n

Container 1

Kubernetes Cluster

Figure 2: Kubernetes architecture for control system.

an EPICS based control architecture. The idea is to deploy
the typical software tools used in an EPICS based imple-
mentation in a Kubernetes cluster.

In Figure 2 we depict a very basic architecture of a Kuber-
netes cluster for an EPICS based control system. Depending
on the scale it will be needed an specific amount of masters
and nodes. Even tough it is always recommended to have
enough of them to maintain HA and load balancing.

Kubernetes automatically manages the Pod location based
on user parameters. Therefore, the service is not related with
the node itself, but with the Pod. So, all the Pods, no matter
where they are, have to be linked with the service they are
providing. That is why in the Figure 2 the links between the
Pods and the services are slashed lines.
Finally, a persistent storage will be added to store data,

configuration files, etc. All the Pods will be linked with the
data they need through a distributed file system as NFS.

In this way, the architecture is valid to implement different
tools: an e-logbook, the EPICS Archiver Appliance, BEAST
alarm handler, open LDAP, EPICS base and EPICS soft
IOCs, among others. The last kind of In/Out Controllers
(IOCs) can be called “virtual” IOCs.

In general, EPICS IOCs are out of the scope of a typical
service which can be provided as a container, since IOCs
are normally linked to some hardware, i.e. they manage
“real” I/Os connected to physical elements. However, con-
tainerization of IOCs is very valuable for defining virtual
IOCs, which can be useful for testing purposes, implement-
ing IOC servers and IOCs connected with network devices
as suggested in [6].
On the other hand, orchestration of those virtual IOCs

will take into account that all the Process Variables (PVs)
must be unique in the net. In consequence, it is not possible
to have more than one replica of the Pod containing the same
EPICS virtual IOC.
Other services as an e-logbook or open LDAP can be

deployed as a common service.
Initial tests include the definition of EPICS base and

EPICS virtual IOC services using minikube8. In the tests, a
virtual IOC has been implemented inside a Pod and a service
exposes it. The published PVs are accessible in an EPICS

8 https://kubernetes.io/docs/getting-started-guides/minikube/
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network as a normal IOC even if the Pod is restarted. We
measured less than 10 seconds from an EPICS virtual IOC
crash to its recover. That is, just monitoring one PV, remov-
ing the Pod which is deploying the virtual IOC, it restarts
automatically and the connection is recovered again in less
than 10 seconds.
Those good initial results encourages us to implement

more complete tests, following the architecture shown in
Figure 2.

CONCLUSIONS
Virtualization is nowadays one of the most useful tools

in IT technologies. Particularly, in these days, the use of
containers is growing rapidly. This technology mainly adds
high availability, load balancing, deployment automation,
resources use optimization, maintainability, scaling and shar-
ing.
In this paper, the implementation of a control system for

large facilities based on containerization is discussed. In or-
der to select the proper tools, all the main container based vir-
tualization options and container orchestrators are compared.
The conclusion is that the binomial Docker/Kubernetes is
nowadays the one that suits the best for a control system.

A control architecture that relies on EPICS is also sketched
with promising results, including the implementation of con-
tainerized EPICS IOCs, which are useful as virtual IOCs

As future work we will intend to build a large Kubernetes
deployment to fit better with the actual control system of a
large facility. This goal will require to containerize several
applications, figure out the scheme that suits best for EPICS
maintainability and select a data adequate storage technology.
Finally, high stress tests will need to be carried out.
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