
MANAGEMENT SOFTWARE AND DATA EXCHANGE PROTOCOL FOR

THE INFN-LNS ACCELERATORS BEAMLINES

G. Vecchio, S. Aurnia, S. Cavallaro, L. Cosentino, B. Diana, E. Furia, S. Pulvirenti

INFN Laboratori Nazionali del Sud, via S. Sofia 62, 95135 Catania

Abstract

This paper describes the design and the development of

an innovative management software for the accelerators

beamlines at INFN-LNS. The Graphical User Interface,

the data exchange protocol, the software functionality and

the hardware will be illustrated. Compared to traditional

platforms for the accelerators console, at INFN-LNS we

have developed a new concept of control system and data

acquisition framework, based on a data structures server

which so far has never been used for supervisory control.

We have chosen Redis as a highly scalable data store,

shared by multiple and different processes. With such

system it is possible to communicate cross-platform,

cross-server or cross-application in a very simple way,

using very lightweight libraries. A complex and highly

ergonomic Graphic User Interface allows to control all

the parameters with a user-friendly interactive approach,

ensuring high functionality so that the beam operator can

visually work in a realistic environment. All the

information related to the beamline elements involved in

the beam transport, can be stored in a centralized

database, with suitable criteria to have a historical

database.

INTRODUCTION

In a complex and heterogeneous environment, like the

LNS beamlines, is very important to have a clear and

powerful synoptic which helps the operators in their work

of beam transportation.

For this purpose, we developed a complex and highly

ergonomic Graphical User Interface, that allows to control

all the parameters adopting a user-friendly interactive

approach, so that the beam operator can visually navigate

through a pseudo-realistic beamline reproduction. The

modular approach of this platform allows to build and

modify all the beamlines, just adding/removing all the

elements, that can be managed individually.

The users that transport the beam can therefore set and

read all the setting parameters, thanks to a continuous

communication with the field level. The data

communication has been realized following a new

concept of control system and data acquisition

framework, based on a data structures server which so far

had never been used for supervisory control.

The beamline consists of different devices from

different vendors and for this reason a standard protocol

for data exchange has been developed.

We have chosen Redis [1] as a highly scalable data

store, shared by multiple and different processes and

applications. This system easily allows cross-platform,

cross-server and cross-application communication, using

extremely lightweight libraries.

We decided to call our system E.T.N.A., acronym of

Enhanced Transport Network for Accelerators.

SYSTEM ARCHITECTURE

The system architecture is composed by three level, as

shown on Figure 1. The field level is composed by all

sensors, PLCs and field machines of the beamlines. The

user interfaces aim to provide control and monitoring of

the beamline to operators. In the middle of this

architecture we have the core of our system, the REDIS

online DB, used for data exchange from both field level

and the GUIs.

The middle tier also hosts a MySQL server for static

data storage and we have a certain degree of fault-

taulerance by using Linux-HA and DRBD. Linux-HA is a

clustering solution that provides reliability, availability

and serviceability. In our architecture we have two

identical servers, a master and a slave, which ensure that

the services running on one of them can be automatically

moved and restarted in the backup’s node.

Figure 1: System architecture.

Cluster infrastructure services are implemented via

Heartbeat. This daemon allows clients to know about the

presence or disappearance of peer processes on other

machines and to easily exchange messages with them.

The Heartbeat daemon must be combined with a cluster

resource manager, which has the task of starting and

stopping the services that cluster will make highly

available. We used Pacemaker that is the preferred cluster

resource manager for clusters based on Heartbeat.

THE CONSOLE GUI

The local console GUI, queries the in-memory database

through a polling procedure and gets the data coming

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA179

TUPHA179
846

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

from the field. The communication between Redis and the

local console is done by a TCP connection through a

proprietary protocol called RESP.

The software architecture adopted on the local console

is three-tier with the use of the architectural pattern

Model-View-Controller (MVC), which separates the

presentation layer from business logic and data storage.

The view shows the data provided by the model that is

directly connected to the database, whereas the controller

accepts inputs and converts them to commands for the

model or view, as shown on Figure 2.

Moreover, in the model layer, we have used Java

Persistence API (JPA), a Java specification for the access,

the persistence and the management of data between Java

objects and relational databases.

Figure 2: Console software architecture.

The main advantages of JPA compared to a database

driver connector is that in JPA data is represented by

classes and objects rather than by tables and records.

Interactive User Interface

The synoptic for the control of beamline elements was

developed using the JavaFX framework [2]. Figure 3

shows the panel that contains the plant of the building,

where the operator can navigate easily whit a mouse and

can zoom in and out to see some place in detail.

Figure 3: Interactive user interface.

Thanks to the modular panel that shows the status of

beamline, the console operator can have a real-time

feedback and operate without knowing in detail the

nomenclature of the various power supplies in the

beamline.

Configurations Save and Reload

A great advantage of this software platform is

represented by the availability of a MySQL database to

save and recall a specific system configuration. Figure 4

shows the particular ergonomic design of the panel for the

configuration retrieval, that can be done by element, mass

number (A), state of charge (Q), energy (E), date and

name of the experiment.

Moreover, it is possible to print a specific setting

simply by choosing a record stored in the database. This

feature avoids tedious work to operators, which, until

now, had to write by hand every configuration in a huge

book.

Figure 4: Save and reload configurations interface.

PERFORMANCE TEST

The tests carried out on the system showed the

excellent management of the server resources like CPU

and memory. Indeed, as shown in Figure 5, we have seen

that the bottleneck is represented by the traffic network, if

data size increase, whereas the CPU time decreases in the

server where Redis runs [3].

Figure 5: Number of query/s decreases as the number of

connections increase.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA179

User Interfaces and User eXperience (UX)
TUPHA179

847

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

CONCLUSIONS

In this paper we presented a new system architecture

and a new user interface for the management of the LNS

accelerators beamline. The system meets the initial

requirements and provides to operators a simple and

interactive control.

It also shows excellent performance, reliability and fault

tolerance.

REFERENCES

[1] Redis documentation,
https://redis.io/documentation

[2] Johan Vos et al., “Pro JavaFX 8: A Definitive Guide

to Building Desktop, Mobile, and Embedded Java

Clients”, 2014, ISBN 978-1-4302-6575-7.

[3] Sabrina Micale, “Redis come back-end di un sistema

di controllo distribuito: analisi delle prestazioni e

delle criticità”, master’s thesis.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA179

TUPHA179
848

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

