
LIMA: LIBRARY FOR IMAGE ACQUISITION
A WORLDWIDE PROJECT FOR 2D DETECTOR CONTROL

S. Petitdemange, L. Claustre#, A. Homs##, E. Papillon, R. Homs, D. Naudet, A. Henry, ESRF,
Grenoble, France,

A. Noureddine, F. Langlois, SOLEIL, Gif-sur-Yvette, France,
G. Mant, STFC/Daresbury Laboratory, Warrington, UK

Abstract
The LIMA project started in 2009. The goal was to

provide a software library for the unified control of 2D
detectors. LIMA is a collaborative project involving
synchrotrons, research facilities and industrial companies.
LIMA supports most detectors used for X-ray detection or
other scientific applications. Live display is supported via
a video interface and most of the native video camera
image formats are supported. LIMA provides a plug-in
architecture for on-line processing which allows image
pre-treatment before saving e.g. noise reduction algorithm
or automatic X-ray beam attenuation during continuous
scans. The library supports many file formats including
EDF, CBF, FITS, HDF5 and TIFF. To cope with
increasing detector acquisition speed, the latest LIMA
release includes multi-threaded, parallelized image saving
with data compression (gzip or lz4). For even higher
throughput a new design, based on a distributed multi-
computer architecture, of the LIMA framework is
envisaged. The paper will describe the LIMA roadmap for
the coming years.

INTRODUCTION
LIMA was born to address the problem of controlling

2D detector in the context of beamline (BL) control
systems [1]. An important number of detectors need to be
integrated in order to operate BL experiments and
different approaches had been followed in the past in
order to optimise efforts in this (never-ending) integration
process. Based on the accumulated experience at the
ESRF, LIMA has been built on top of the following
paradigms:
 Clear separation between image generation and

image processing
 Use of events and threads in order to better use

system resources
 Control-system agnostic library that can be included

in different kinds of applications
 High-performance code in C++, which can be bound

to other high-level languages

Structure
The implementation of these concepts was made using

the plugin philosophy, shown in Figure 1. A LIMA core
library contains the code for image processing and a
camera plugin is in charge of generating the images. The
visible part of the library core is the Control Layer,
exporting to the user the generic configuration and control

of the image acquisition and processing. The camera
plugin, also referred to as the Hardware Layer, registers to
the Control Layer through a well-defined hardware
interface, which contains different functional,
independent blocks called capabilities. The capabilities
control generic functionality that can be present in 2D
detectors, covering different domains like image
manipulation, external synchronisation, video streaming,
among others. Three capabilities are mandatory for all
plugins: generic detector information, frame
synchronisation and image buffer control. Others, like
pixel binning, region-of-interest (RoI) selection and
shutter control are optional.

Figure 1: general LIMA layout.

Once the capabilities are discovered and configured, the

control layer can start an acquisition of a sequence of
frames. It is the responsibility of the plugin to inject each
new acquired frame, which enters into the processing
chain.

Processlib
A helper library Processlib was developed to

implement the frame processing chain. It allows defining
a sequence of tasks to be executed to each acquired frame.
Tasks can run sequentially or in parallel, depending if
they modify the source image or not. They are executed
by a pool of threads, which is dimensioned depending on
the number of available CPU cores. Operations on
different frames can be parallelised, allowing data
acquisitions to run faster than a traditional single-CPU

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA194

TUPHA194
886

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

approach. As mentioned before, the library is based on
events; each task can have an end callback that notifies its
result is ready.

Features
Some detectors provide a raw image that requires a

preliminary treatment before being used. For instance,
multi-module panels can feed data that requires a
geometric reconstruction, or coded pixel data that must be
translated into intensity values. For this purpose LIMA
provide an entry point for frame reconstruction, to be
executed at the beginning of the processing chain.

If not (completely) done by the hardware, the image
can be manipulated to meet the user requests in terms of
pixel binning, horizontal/vertical flip, rotation and RoI
selection, which is then published as the base image.
Background subtraction, flat-field correction and pixel
masking can be applied to the base image to obtain the
final image. At this point the image can be saved, or used
for data reduction, like RoI counters and beam position
monitor (BPM) functionality.

Collaboration
Shortly after its creation and introduction into the

ESRF BL control system, SOLEIL Synchrotron joined the
LIMA development in a collaboration framework.
Following this initiative, other large facilities, research
institutes and detector manufacturers have joined the
active LIMA collaboration.

NEW FEATURES
In order to satisfy new requirements for experiment

control, the LIMA library core has been extended with
several new features.

Hardware Layer
Some detector libraries allow native data saving, such

as the Dectris Pilatus file saving in CBF format. A new
HwSaving capability has been added to activate this
feature from the Control layer saving interface.

In the same way, the hardware plugin can provide the
software frame reconstruction method to be applied by
LIMA/Processlib. For these cases, the HwReconstruction
capability formalises the specification and activation of
such software tasks.

Finally, the HwVideo capability has been extended with
the Auto-Gain mode. Video cameras included in LIMA
like the Basler support this functionality.

Control Layer
In some experiments, the camera image configuration is

changed between different, well-defined modes. For
instance, optical microscope configurations can require
different flipping and rotation modes. The same need can
apply to saving parameters, which can be specific to
different kind of experiments. An interface based on
libconfig [2] has been added to LIMA, which allows
identifying configurations of the different subsystems

(image, acquisition, saving, etc). Pre-defined
configurations can be arbitrarily activated, with the
possibility of being saved in persistent files.

Some X-ray diffraction images consist in circular
patterns, which can be reduced by azimuthal integration.
Region-of-Interest (RoI) counters have been extended to
arc-like shapes, in order to calculate the evolution of
diffraction ring intensities. These counters are used, for
instance, in the online construction of sinograms in
diffraction tomography experiments.

Extensions have been made in the accumulation
acquisition mode. Information on pixel saturation above a
pre-defined threshold can be retrieved in accumulation
mode, necessary to detect non-linearity in the summed
image. A saturated mask is generated for every
accumulation, indicating, for each pixel, how many base
images had the value exceeding the threshold. In addition
to that it is possible to retrieve how many pixels saturate
on each acquired frames. A callback can be registered to
notify that over-exposure affects a number of pixels above
a predefined value, a direct indication of a strong dose. It
can be used in the Equipment Protection System to
execute an action against sensor over-exposure, like
shutter closing or an optimal selection of automatic filters.
Finally, a specific offset subtraction can be applied on
every base image before being accumulated, avoiding
large background accumulation for non photon-counting
detectors like the CMOS Andor Zyla.

 The frame processing task interface has been explicitly
exported to Python, allowing the execution of pure-
Python code on every acquired frame. Concerning the
Processlib execution dynamics, the task priority is now
adjusted to its age, also known as aging scheduling,
favouring older tasks to run first and avoid starvation.
This forces a continuous flow of frames data execution
chain, avoiding old frame stacking when the system is
saturated.

A peak finder algorithm has been added to the
processing task library, providing faster single-peak BPM
functionality.

Data Saving
The HDF5 file format has been natively included into

LIMA. The Nexus standard structure is respected,
supporting multi-data set files.

Two different data compression algorithms have been
added to the EDF format: gzip (EDFGZ) and lz4
(EDFLZ4). Similar to CBF, frame compression is
executed in parallel for an optimal use of the available
CPU (cores). In particular, the compression code has been
optimised for runtime speed.

The EDF format has been extended to dynamic frame
concatenation (EDFConcat). A single image in the file can
grow with the concatenation of new frames, similar to the
stripe concatenation; the header is updated on each frame.

New parallel file-systems like GPFS feature an
increased performance when multiple frame streams are
used. LIMA now allows parallel frame saving in order to
benefit from this functionality.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA194

Experiment Control
TUPHA194

887

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

High-level Interface
The control of the above-mentioned features is

available in the Python/Tango LIMA interface. In addition
to that, Tango events can be activated on the LIMA image
counters, which are by default moderated to maximum
update rate (25 fps).

Time-resolved 1D spectral measurements can generate
a large number of small frames, which can be packed
together in the stripe-concatenation mode. This data can
retrieved in blocks of multiple frames from the Tango
server, optimising the I/O to the client. This read-block
mechanism has been extended to 2D data, transferring 3D
image stacks to the client, useful in high frame rate
applications.

The current LIMA/Python code has been ported to
Python 3.6, both on Windows and Linux OS. The
TANGO interface uses PyTango 9.

Visualisation
In addition to the existing visualisation mechanisms

based on shared memories, openGL widgets and web
servers, a new project for the LIMA graphical user
interface has been developed (Fig. 2). It is built on top of
the Taurus framework [3] and it contains in an ergonomic
design the control of all the LIMA features, The GUI can
either instantiate a local LIMA controller or connect to a
remote TANGO server.

Figure 2: Display with Lima-GUI.

AtkPanel is the generic TANGO monitoring

application, it helps in the development, diagnostic and
operation of TANGO control environment. A TANGO
device called LiveViewer has been developed to extend
AtkPanel visualization to LIMA servers; figure 3 shows a
snapshot of AtkPanel displaying LiveViewer image
attribute.

Figure 3: Display with Tango tool AtkPanel.

A plugin to the open-source ImageJ image processing

framework was developed to control and read data from
the LiveViewer LIMA TANGO device. It provides
visualisation services in environments with strong Java
image processing background.

BLISS
The BLISS framework [4] is the evolution of the ESRF

BL control system, aimed to address the future challenges
of the EBS instrumentation. Completely based on Python,
its modular architecture is being developed in a way that it
can both satisfy simple configurations and evolve in
complexity to fit modern BL requirements. As a key
element in the data acquisition chain, LIMA devices are
integrated into BLISS, featuring image readout, RoI
counters and BPM data.

NEW DETECTORS
In addition to the previously reported [1] list of

detectors (~20), the following hardware has been
interfaced to LIMA:

 PSI Eiger 500k and 2M
 Dectris Pilatus3, Eiger
 DSG/STFC/Quantum Detectors: Hexitec, Merlin,

XSPRESS 3 and Ultra
 Pixirad PX1 and PX8
 Andor sCMOS detectors: Zyla, Neo
 PCO 2K, 4K and Edge HS
 imXPAD pixel detectors
 Aviex PCCD-170170
 Hamamatsu Orca-Flash
 v4l2 : webcams and other compatible cameras
 Maxipix has been ported to C++ (from Python).
 Dectris Mythen3

 The following detectors, previously supported only on
Windows, are now ported to Linux OS:

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA194

TUPHA194
888

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

 Dexela flat panel
 PCO SDK

CHALLENGES

Saving
The previous list of detectors shows the continuous

trend towards higher performance data acquisitions. For
instance, the following list summarises the maximum 2D
data rate that can be generated:

 PCO Edge: 1 GByte/s
 Dectris Pilatus 3 2M, PSI Eiger 500k: 2 GByte/s
 Dectris Eiger 4M: 4 GByte/s
 PSI Eiger 2M: 8 GByte/s

By default, LIMA allocates as much memory as

possible to hold the full acquisition in RAM. File saving
is started in parallel as soon as the data arrives. Thus, for
very long acquisitions, which do not fit on the backend
computer RAM, the frame rate is basically limited by the
compression factor and the effective data bandwidth to
the storage subsystem. Saving on local disks can easily go
to 1 GByte/s and higher, but size is currently limited to
several TeraBytes. This capacity is not enough for
intensive, high duty-cycle experiments without an
effective dead time for data flushing from local disks to
larger storage.

The ESRF has traditionally been equipped with high-
performance central, shared storage servers, absorbing
today up to 1 GByte/s per single 10 Gigabit Ethernet link.
GPFS was deployed in the NICE storage systems, notably
increasing the overall performance with small,
compressed single-image files. For example, the Pilatus
3-2M detector data can be compressed by a factor 2-3,
with an effective saving data rate of 700 MByte/s, thanks
to the LIMA parallel saving and the improved
compression speed mentioned before.

 However, this performance cannot always be kept
sustained for long periods (~1 day) if multiple BLs are
generating that amount of data. Investigations are taking
place to find out the optimal storage infrastructure
topology. Alternative systems include dedicated buffer
storage, decoupling the needs for online analysis from
long-term archiving.

Computer Performance
2D detector backend computers are typically selected

for high-performance resources, basically CPU
processing power, available RAM and global I/O
bandwidth. The explosion of high-speed X-ray detectors,
in particular those that can be aggregated due to their
modular design, is pushing to the limits of commercial
available systems.

In order to operate the detectors to their maximum
capabilities, the PCs must be tuned to their optimal
performance, from the BIOS settings, like hyper-
threading, memory speed and power management, to OS
configuration like isolated CPUs, CPU affinity, real-time

scheduling capabilities, network subsystem IRQ and
memory options, among others.

Long-term Stability
LIMA has been ported to CMake build utility in order

to simplify the management of different operating
systems (Windows and Linux) and compiler variants.
Evolution in Python version is also taken in charge by the
CMake porting.

In order to go one step further towards long-term
stability, LIMA has been installed into continuous
integration (CI) platforms. It is based on GitHub services
that allow connecting Travis-CI [5] for Linux and
Appveyor [6] for Windows. New commits and pull-
requests trigger automatic compilation batches and unit
tests, with their corresponding reports [7].

ROADMAP

Visualisation
Silx [8] is a data visualization and analysis framework

for synchrotron applications. In the medium term strategy,
it is envisaged to use it as the de-facto LIMA visualization
mechanism.

High-performance Acquisitions
As analysed before, the continuous development of

high-speed detectors pushes data acquisition performance
to new levels. A single backend computer cannot always
process, in the standard way, all data coming for an
aggregated, multi-link detector system. An evolution of
LIMA to multi-backend systems will be needed in the
near future to cope with such challenging data
acquisitions. At least two different data dispatching
mechanisms are foreseen: a full frame is send to one
backend PC, or all the frames coming from the same
detector module are sent to a dedicated PC.

The frame processing chain in LIMA is currently linear
shaped. That is, one frame at the hardware source is
transformed into one frame at the end of the chain. Saving
at different stages of frame processing is not currently
supported by LIMA. The introduction of branches in the
frame processing chain is expected to open new
possibilities in image data reduction and online analysis.
In the same way, a unified interface for different saving
streams will help in the storage at different frame process
stages, including data reduction software plugins, like
PyFAI and sinogram generation.

LIMA controls directly the memory buffers to be used
in image acquisition, but the global management of
memory allocation for software processing tasks needs to
be addressed. In particular, it is desirable to de-couple the
dynamics of frame acquisition and processing. For
instance, a new hardware acquisition could start while the
frames from the previous acquisition are still being saved,
reducing the dead-time in experimental sequences. This
flexibility demands, among others, a finer control on
memory buffer dynamics. Future development roadmap
includes a review of the buffer memory infrastructure.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA194

Experiment Control
TUPHA194

889

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Packaging and Deployment
A global packing solution is being studied inside the

BLISS development framework and LIMA is also in the
loop. The Conda package management system [9] is
currently under test. From the deployment point of view,
Ansible [10] is a candidate that is being considered. The
Supervisor utility [11] can be used in the future as a
generic tool for controlling LIMA control processes,
typically TANGO device servers.

CONCLUSIONS
LIMA continues its way controlling diverse 2D

detectors in synchrotrons and other large facilities. In
production since 2010 in different control environments,
it is a mature and stable library. New features and
performance optimisations have been added to better
satisfy scientific demands. At the same time, new
detectors have been integrated, creating new challenges in
terms of functionality and performance.

The roadmap envisages structural improvements that
allow a better use of computing resources and expanding
LIMA to multiple backend PCs.

The LIMA community keeps its active collaboration,
contributing with new camera plugins and software tasks,
as well as testing and debugging new releases in different
environments.

ACKNOWLEDGEMENTS
As expressed above, important contributions in

hardware plug-ins, saving interfaces, installation scripts
and TANGO extensions have been made by collaborators,
in particular at SOLEIL, PETRA III/DESY, FRM-
II/TUM, MAX-LAB, ALBA, ADSC and Rayonix.

REFERENCES
[1] S. Petitdemange, L. Claustre, A. Homs, E. Papillon,

R. Homs-Regojo: “The Lima Project Update”,
Proceedings of ICALEPCS2013, FRCOAAB08, San
Francisco, CA, USA.

[2] http://www.hyperrealm.com/libconfig/libconfig.html
[3] http://www.taurus-scada.org
[4] M. Guijarro_ A. Beteva T. Coutinho M. C.

Dominguez C. Guilloud A. Homs, J. Meyer V.
Michel E. Papillon M. Perez S. Petitdemange:
“BLISS - Experiments Control for ESRF EBS
Beamlines”, ICALEPCS2017, WEBPL05,
Barcelona, SPAIN

[5] https://travis-ci.org/esrf-bliss/Lima
[6] https://ci.appveyor.com
[7] git://github.com/esrf-bliss/Lima.git
[8] J. Kieffer, P. Knobel, D. Naudet, P. Paleo, H. Payno,

V.A. Sole, V. Valls, T. Vincent: “Python packages to
support the development of data assessment,
reduction and analysis applications at synchrotron
radiation facilities”, 2017,
doi:10.5281/zenodo.576042, http://www.silx.org

[9] https://conda.io
[10] https://www.ansible.com
[11] http://supervisord.org

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA194

TUPHA194
890

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

