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Abstract 
The LIMA project started in 2009. The goal was to 

provide a software library for the unified control of 2D 
detectors. LIMA is a collaborative project involving 
synchrotrons, research facilities and industrial companies. 
LIMA supports most detectors used for X-ray detection or 
other scientific applications. Live display is supported via 
a video interface and most of the native video camera 
image formats are supported. LIMA provides a plug-in 
architecture for on-line processing which allows image 
pre-treatment before saving e.g. noise reduction algorithm 
or automatic X-ray beam attenuation during continuous 
scans. The library supports many file formats including 
EDF, CBF, FITS, HDF5 and TIFF. To cope with 
increasing detector acquisition speed, the latest LIMA 
release includes multi-threaded, parallelized image saving 
with data compression (gzip or lz4). For even higher 
throughput a new design, based on a distributed multi-
computer architecture, of the LIMA framework is 
envisaged. The paper will describe the LIMA roadmap for 
the coming years. 

INTRODUCTION 
LIMA was born to address the problem of controlling 

2D detector in the context of beamline (BL) control 
systems [1]. An important number of detectors need to be 
integrated in order to operate BL experiments and 
different approaches had been followed in the past in 
order to optimise efforts in this (never-ending) integration 
process. Based on the accumulated experience at the 
ESRF, LIMA has been built on top of the following 
paradigms: 
 Clear separation between image generation and 

image processing 
 Use of events and threads in order to better use 

system resources 
 Control-system agnostic library that can be included 

in different kinds of applications 
 High-performance code in C++, which can be bound 

to other high-level languages 

Structure 
The implementation of these concepts was made using 

the plugin philosophy, shown in Figure 1. A LIMA core 
library contains the code for image processing and a 
camera plugin is in charge of generating the images. The 
visible part of the library core is the Control Layer, 
exporting to the user the generic configuration and control 

of the image acquisition and processing. The camera 
plugin, also referred to as the Hardware Layer, registers to 
the Control Layer through a well-defined hardware 
interface, which contains different functional, 
independent blocks called capabilities. The capabilities 
control generic functionality that can be present in 2D 
detectors, covering different domains like image 
manipulation, external synchronisation, video streaming, 
among others. Three capabilities are mandatory for all 
plugins: generic detector information, frame 
synchronisation and image buffer control. Others, like 
pixel binning, region-of-interest (RoI) selection and 
shutter control are optional. 

 
Figure 1: general LIMA layout. 

 
Once the capabilities are discovered and configured, the 

control layer can start an acquisition of a sequence of 
frames. It is the responsibility of the plugin to inject each 
new acquired frame, which enters into the processing 
chain.  

Processlib 
A helper library Processlib was developed to 

implement the frame processing chain. It allows defining 
a sequence of tasks to be executed to each acquired frame. 
Tasks can run sequentially or in parallel, depending if 
they modify the source image or not. They are executed 
by a pool of threads, which is dimensioned depending on 
the number of available CPU cores. Operations on 
different frames can be parallelised, allowing data 
acquisitions to run faster than a traditional single-CPU 
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approach. As mentioned before, the library is based on 
events; each task can have an end callback that notifies its 
result is ready. 
 

Features 
Some detectors provide a raw image that requires a 

preliminary treatment before being used. For instance, 
multi-module panels can feed data that requires a 
geometric reconstruction, or coded pixel data that must be 
translated into intensity values. For this purpose LIMA 
provide an entry point for frame reconstruction, to be 
executed at the beginning of the processing chain.  

If not (completely) done by the hardware, the image 
can be manipulated to meet the user requests in terms of 
pixel binning, horizontal/vertical flip, rotation and RoI 
selection, which is then published as the base image. 
Background subtraction, flat-field correction and pixel 
masking can be applied to the base image to obtain the 
final image. At this point the image can be saved, or used 
for data reduction, like RoI counters and beam position 
monitor (BPM) functionality. 

Collaboration 
Shortly after its creation and introduction into the 

ESRF BL control system, SOLEIL Synchrotron joined the 
LIMA development in a collaboration framework. 
Following this initiative, other large facilities, research 
institutes and detector manufacturers have joined the 
active LIMA collaboration. 

NEW FEATURES 
In order to satisfy new requirements for experiment 

control, the LIMA library core has been extended with 
several new features. 

Hardware Layer 
Some detector libraries allow native data saving, such 

as the Dectris Pilatus file saving in CBF format. A new 
HwSaving capability has been added to activate this 
feature from the Control layer saving interface.  

In the same way, the hardware plugin can provide the 
software frame reconstruction method to be applied by 
LIMA/Processlib. For these cases, the HwReconstruction 
capability formalises the specification and activation of 
such software tasks. 

Finally, the HwVideo capability has been extended with 
the Auto-Gain mode. Video cameras included in LIMA 
like the Basler support this functionality. 

Control Layer 
In some experiments, the camera image configuration is 

changed between different, well-defined modes. For 
instance, optical microscope configurations can require 
different flipping and rotation modes. The same need can 
apply to saving parameters, which can be specific to 
different kind of experiments. An interface based on 
libconfig [2] has been added to LIMA, which allows 
identifying configurations of the different subsystems 

(image, acquisition, saving, etc). Pre-defined 
configurations can be arbitrarily activated, with the 
possibility of being saved in persistent files. 

Some X-ray diffraction images consist in circular 
patterns, which can be reduced by azimuthal integration. 
Region-of-Interest (RoI) counters have been extended to 
arc-like shapes, in order to calculate the evolution of 
diffraction ring intensities. These counters are used, for 
instance, in the online construction of sinograms in 
diffraction tomography experiments.  

Extensions have been made in the accumulation 
acquisition mode. Information on pixel saturation above a 
pre-defined threshold can be retrieved in accumulation 
mode, necessary to detect non-linearity in the summed 
image. A saturated mask is generated for every 
accumulation, indicating, for each pixel, how many base 
images had the value exceeding the threshold. In addition 
to that it is possible to retrieve how many pixels saturate 
on each acquired frames. A callback can be registered to 
notify that over-exposure affects a number of pixels above 
a predefined value, a direct indication of a strong dose. It 
can be used in the Equipment Protection System to 
execute an action against sensor over-exposure, like 
shutter closing or an optimal selection of automatic filters. 
Finally, a specific offset subtraction can be applied on 
every base image before being accumulated, avoiding 
large background accumulation for non photon-counting 
detectors like the CMOS Andor Zyla. 

 The frame processing task interface has been explicitly 
exported to Python, allowing the execution of pure-
Python code on every acquired frame. Concerning the 
Processlib execution dynamics, the task priority is now 
adjusted to its age, also known as aging scheduling, 
favouring older tasks to run first and avoid starvation. 
This forces a continuous flow of frames data execution 
chain, avoiding old frame stacking when the system is 
saturated. 

A peak finder algorithm has been added to the 
processing task library, providing faster single-peak BPM 
functionality. 

Data Saving 
The HDF5 file format has been natively included into 

LIMA. The Nexus standard structure is respected, 
supporting multi-data set files. 

Two different data compression algorithms have been 
added to the EDF format: gzip (EDFGZ) and lz4 
(EDFLZ4). Similar to CBF, frame compression is 
executed in parallel for an optimal use of the available 
CPU (cores). In particular, the compression code has been 
optimised for runtime speed. 

The EDF format has been extended to dynamic frame 
concatenation (EDFConcat). A single image in the file can 
grow with the concatenation of new frames, similar to the 
stripe concatenation; the header is updated on each frame. 

New parallel file-systems like GPFS feature an 
increased performance when multiple frame streams are 
used. LIMA now allows parallel frame saving in order to 
benefit from this functionality. 
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High-level Interface 
The control of the above-mentioned features is 

available in the Python/Tango LIMA interface. In addition 
to that, Tango events can be activated on the LIMA image 
counters, which are by default moderated to maximum 
update rate (25 fps). 

Time-resolved 1D spectral measurements can generate 
a large number of small frames, which can be packed 
together in the stripe-concatenation mode. This data can 
retrieved in blocks of multiple frames from the Tango 
server, optimising the I/O to the client. This read-block 
mechanism has been extended to 2D data, transferring 3D 
image stacks to the client, useful in high frame rate 
applications. 

The current LIMA/Python code has been ported to 
Python 3.6, both on Windows and Linux OS. The 
TANGO interface uses PyTango 9. 

Visualisation 
In addition to the existing visualisation mechanisms 

based on shared memories, openGL widgets and web 
servers, a new project for the LIMA graphical user 
interface has been developed (Fig. 2). It is built on top of 
the Taurus framework [3] and it contains in an ergonomic 
design the control of all the LIMA features, The GUI can 
either instantiate a local LIMA controller or connect to a 
remote TANGO server.  

 

Figure 2: Display with Lima-GUI. 

 
AtkPanel is the generic TANGO monitoring 

application, it helps in the development, diagnostic and 
operation of TANGO control environment. A TANGO 
device called LiveViewer has been developed to extend 
AtkPanel visualization to LIMA servers; figure 3 shows a 
snapshot of AtkPanel displaying  LiveViewer image 
attribute. 

Figure 3: Display with Tango tool AtkPanel. 

 
A plugin to the open-source ImageJ image processing 

framework was developed to control and read data from 
the LiveViewer LIMA TANGO device. It provides 
visualisation services in environments with strong Java 
image processing background. 

BLISS 
The BLISS framework [4] is the evolution of the ESRF 

BL control system, aimed to address the future challenges 
of the EBS instrumentation. Completely based on Python, 
its modular architecture is being developed in a way that it 
can both satisfy simple configurations and evolve in 
complexity to fit modern BL requirements. As a key 
element in the data acquisition chain, LIMA devices are 
integrated into BLISS, featuring image readout, RoI 
counters and BPM data. 

 

NEW DETECTORS 
In addition to the previously reported [1] list of 

detectors (~20), the following hardware has been 
interfaced to LIMA: 

 PSI Eiger 500k and 2M 
 Dectris Pilatus3, Eiger 
 DSG/STFC/Quantum Detectors: Hexitec, Merlin, 

XSPRESS 3 and Ultra 
 Pixirad PX1 and PX8 
 Andor sCMOS detectors: Zyla, Neo 
 PCO 2K, 4K and Edge HS 
 imXPAD pixel detectors 
 Aviex PCCD-170170 
 Hamamatsu Orca-Flash 
 v4l2 : webcams and other compatible cameras 
 Maxipix has been ported to C++ (from Python). 
 Dectris Mythen3 

 The following detectors, previously supported only on 
Windows, are now ported to Linux OS: 
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 Dexela flat panel 
 PCO SDK 

CHALLENGES 

Saving 
The previous list of detectors shows the continuous 

trend towards higher performance data acquisitions. For 
instance, the following list summarises the maximum 2D 
data rate that can be generated: 

 PCO Edge: 1 GByte/s 
 Dectris Pilatus 3 2M, PSI Eiger 500k: 2 GByte/s 
 Dectris Eiger 4M: 4 GByte/s 
 PSI Eiger 2M: 8 GByte/s 

 
By default, LIMA allocates as much memory as 

possible to hold the full acquisition in RAM. File saving 
is started in parallel as soon as the data arrives. Thus, for 
very long acquisitions, which do not fit on the backend 
computer RAM, the frame rate is basically limited by the 
compression factor and the effective data bandwidth to 
the storage subsystem. Saving on local disks can easily go 
to 1 GByte/s and higher, but size is currently limited to 
several TeraBytes. This capacity is not enough for 
intensive, high duty-cycle experiments without an 
effective dead time for data flushing from local disks to 
larger storage. 

The ESRF has traditionally been equipped with high-
performance central, shared storage servers, absorbing 
today up to 1 GByte/s per single 10 Gigabit Ethernet link. 
GPFS was deployed in the NICE storage systems, notably 
increasing the overall performance with small, 
compressed single-image files. For example, the Pilatus 
3-2M detector data can be compressed by a factor 2-3, 
with an effective saving data rate of 700 MByte/s, thanks 
to the LIMA parallel saving and the improved 
compression speed mentioned before. 

 However, this performance cannot always be kept 
sustained for long periods (~1 day) if multiple BLs are 
generating that amount of data. Investigations are taking 
place to find out the optimal storage infrastructure 
topology. Alternative systems include dedicated buffer 
storage, decoupling the needs for online analysis from 
long-term archiving. 

Computer Performance 
2D detector backend computers are typically selected 

for high-performance resources, basically CPU 
processing power, available RAM and global I/O 
bandwidth. The explosion of high-speed X-ray detectors, 
in particular those that can be aggregated due to their 
modular design, is pushing to the limits of commercial 
available systems. 

In order to operate the detectors to their maximum 
capabilities, the PCs must be tuned to their optimal 
performance, from the BIOS settings, like hyper-
threading, memory speed and power management, to OS 
configuration like isolated CPUs, CPU affinity, real-time 

scheduling capabilities, network subsystem IRQ and 
memory options, among others. 

Long-term Stability 
LIMA has been ported to CMake build utility in order 

to simplify the management of different operating 
systems (Windows and Linux) and compiler variants. 
Evolution in Python version is also taken in charge by the 
CMake porting. 

In order to go one step further towards long-term 
stability, LIMA has been installed into continuous 
integration (CI) platforms. It is based on GitHub services 
that allow connecting Travis-CI [5] for Linux and 
Appveyor [6] for Windows. New commits and pull-
requests trigger automatic compilation batches and unit 
tests, with their corresponding reports [7]. 

ROADMAP 

Visualisation 
Silx [8] is a data visualization and analysis framework 

for synchrotron applications. In the medium term strategy, 
it is envisaged to use it as the de-facto LIMA visualization 
mechanism. 

High-performance Acquisitions 
As analysed before, the continuous development of 

high-speed detectors pushes data acquisition performance 
to new levels. A single backend computer cannot always 
process, in the standard way, all data coming for an 
aggregated, multi-link detector system. An evolution of 
LIMA to multi-backend systems will be needed in the 
near future to cope with such challenging data 
acquisitions. At least two different data dispatching 
mechanisms are foreseen: a full frame is send to one 
backend PC, or all the frames coming from the same 
detector module are sent to a dedicated PC.  

The frame processing chain in LIMA is currently linear 
shaped. That is, one frame at the hardware source is 
transformed into one frame at the end of the chain. Saving 
at different stages of frame processing is not currently 
supported by LIMA. The introduction of branches in the 
frame processing chain is expected to open new 
possibilities in image data reduction and online analysis. 
In the same way, a unified interface for different saving 
streams will help in the storage at different frame process 
stages, including data reduction software plugins, like 
PyFAI and sinogram generation. 

LIMA controls directly the memory buffers to be used 
in image acquisition, but the global management of 
memory allocation for software processing tasks needs to 
be addressed. In particular, it is desirable to de-couple the 
dynamics of frame acquisition and processing. For 
instance, a new hardware acquisition could start while the 
frames from the previous acquisition are still being saved, 
reducing the dead-time in experimental sequences. This 
flexibility demands, among others, a finer control on 
memory buffer dynamics. Future development roadmap 
includes a review of the buffer memory infrastructure. 
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Packaging and Deployment 
A global packing solution is being studied inside the 

BLISS development framework and LIMA is also in the 
loop. The Conda package management system [9] is 
currently under test. From the deployment point of view, 
Ansible [10] is a candidate that is being considered. The 
Supervisor utility [11] can be used in the future as a 
generic tool for controlling LIMA control processes, 
typically TANGO device servers. 

CONCLUSIONS 
LIMA continues its way controlling diverse 2D 

detectors in synchrotrons and other large facilities. In 
production since 2010 in different control environments, 
it is a mature and stable library. New features and 
performance optimisations have been added to better 
satisfy scientific demands. At the same time, new 
detectors have been integrated, creating new challenges in 
terms of functionality and performance.  

The roadmap envisages structural improvements that 
allow a better use of computing resources and expanding 
LIMA to multiple backend PCs. 

The LIMA community keeps its active collaboration, 
contributing with new camera plugins and software tasks, 
as well as testing and debugging new releases in different 
environments. 
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