
ODIN - A CONTROL AND DATA ACQUISITION FRAMEWORK FOR
EXCALIBUR 1M AND 3M DETECTORS

G. Yendell, U. Pedersen, N. Tartoni, S. Williams, Diamond Light Source, Oxfordshire, UK
T. Nicholls, STFC/RAL, Chilton, Didcot, Oxon, UK

A. Greer, OSL, Cambridge UK

Abstract
Detectors currently being commissioned at Diamond

Light Source (DLS) bring the need for more sophisticated
control and data acquisition software. The Excalibur 1M
and 3M are modular detectors comprised of rows of identi-
cal stripes. The Odin framework emulates this architecture
by operating multiple file writers on different server nodes,
managed by a central controller. The low-level control and
communication is implemented in a vendor supplied C li-
brary with a set of C-Python bindings, providing a fast and
robust API to control the detector nodes, alongside a simple
interface to interact with the file writer instances over Ze-
roMQ. The file writer is a C++ module that uses plugins to
interpret the raw data and provide the format to write to file,
allowing it to be used with other detectors such as Percival
and Eiger. At DLS we implement an areaDetector driver
to integrate Odin with the beamline EPICS control system.
However, because Odin provides a simple HTTP Rest API, it
can be used by any site control system. This paper presents
the architecture and design of the Odin framework and illus-
trates its usage as a controller of complex, modular detector
systems.

INTRODUCTION

Diamond Light Source (DLS) are currently developing
data acquisition and control software for several modular,
high-performance detectors. Excalibur [1] is the result of
a collaboration between DLS and STFC and has been im-
plemented for the X-ray Imaging and Coherence beamline
I13 to make use of the small pixel size of the detector in
coherence diffraction imaging. The Hard X-ray Nanoprobe
beamline I14 has more recently chosen a 3M Excalibur sys-
tem for nanoscale microscopy. Another collaboration, be-
tween DLS, Elettra, the Pohang Light Source and STFC, is
ongoing to develop the Percival detector [2] for soft x-ray ex-
periments. At the same time, DLS is exploring commercial
options in the Eiger from Dectris. Currently, the VMXi (Ver-
satile Macromolecular Crystallography in-situ) beamline is
commissioning the first of these; a 4M Eiger X detector [3].
With a multitude of modular and scalable detector systems in
development concurrently, an opportunity arose to develop
shared control and data acquisition software stacks to drive
the systems, designed from the very beginning to be detector
agnostic, but with a set of specific use cases to guide the
design process.

EXCALIBUR DETECTORS
Excalibur [1] detectors are made up of identical sensor

’stripes’, with 8 Medipix3 readout chips. Each stripe has
its own FPGA data acquisition card, known as a front-end
module (FEM), with a 10Gbit/s optical link. These stripes
are combined into a pair to create what is called a ’module’;
a 1M 2048 x 512 pixel sensor. A 3M simply consists of 3
stacked modules producing a 2048 x 1536 sensor. A primary
feature of the Excalibur is the small pixel size of the sensors,
at 55 um x 55 um. A schematic of the 3M Excalibur DAQ
system is shown in Fig. 1. The design follows a generic
data acquisition framework for detectors, where the Linux
cluster receiving the data simply sees a set of parallel data
links. This allows the software supporting the framework
a large amount of abstraction, simplifying the architecture.
The Excalibur is currently operated at DLS with an EPICS
areaDetector driver [4] controlling and acquiring data from
each individual FEM, with a top level IOC presenting PVs
wired through to the underlying processes. However, this
system is limited both in its control flexibility and its data
throughput and is intended to be replaced by the Odin soft-
ware stack, described in this paper.

Figure 1: A schematic of the Excalibur 3M system [5].

AN OVERVIEW OF ODIN
Devices consisting of multiple individual parts can lead

to complications in the control layer trying to get operate
them together in unity. The Odin software framework is
designed specifically for this modular architecture by mir-
roring the structure within its internal processes. The data
acquisition modules have the perspective of being one of
many nodes built into the core of their logic. This makes it
straightforward to operate multiple file writers on different
server nodes working together to write a single acquisition
to disk, all managed by a single point of control. It also
means that the difference in the data acquisition stack of a
1M system and a 3M system can be as little as duplicating a
few processes and modifying the configuration of the central
controller. Given the collaborative nature of the detector
development, the software framework has been designed to

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA212

TUPHA212
966

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control



generic, allowing its integration with control systems used
at different sites.
Odin comprises two parts; OdinControl, a central con-

troller, and OdinData, a data acquisition stack, both of which
can be used independently of each other as well as in con-
junction. These modules are described, separately, below.

ODIN CONTROL
OdinControl is a HTTP based server host providing a

framework that device-specific adapters can be implemented
for to interface to the control channel of a device. The archi-
tecture of OdinControl for the Excalibur use case is shown
in Fig. 2. Adapters can be loaded in an Odin Server instance,
which then provides a REST API that can be operated us-
ing just a web page providing the appropriate GETs and
PUTs, corresponding to the attributes and methods in the
adapter API. See Fig. 3 for an example web page for Perci-
val. This can be extended to a RESTful client library that
can be integrated into a higher level control system such as
EPICS. Once an Odin Server instance is running with a set
of adapters loaded, a parameter tree is created in the API
defining the different devices, duplicates of the same devices
and finally the endpoints for those devices, producing logi-
cal paths to the parameters and methods of a collection of
separate systems. With OdinControl and a device adapter, a
control system agnostic, consistent API is created that can be
used in a wide range of applications. OdinControl provides
a simple Python API, enabling rapid development of device
adapters. Because of the generic architecture of OdinCon-
trol it does not need a tight coupling to OdinData; it is also
interfaced via adapters, just like Excalibur or Percival, to
provide a REST API for a set of methods. This keeps the two
parts of Odin entirely separate, achieving a good software
design with loose coupling and high cohesion.

ODIN DATA
OdinData gathers incoming frames from a data stream

and writes them to disk as quickly as possible. It has a
modular architecture making it simple to add functionality
and extend its use for new detectors. The function of the
software itself is relatively simple, allowing a higher-level su-
pervisory control process to do the complex logic defined by
each experimental situation and exchanging simple configu-
ration messages to perform specific operations. This makes
it easy for the control system to operate separate systems
cooperatively.
OdinData consists of two separate processes. These are

the FrameReceiver (FR) and the FrameProcessor (FP). The
FR is able to collect data packets on various input channel
types, for example UDP and ZeroMQ [6], construct data
frames and add some useful meta data to the packet header
before passing it on to the FP through a shared memory
interface. The FP can then grab the frame, construct data
chunks in the correct format and write them to disk. The
two separate processes communicate via inter-process com-
munication (IPC) messages over two ZMQ channels. When

Figure 2: OdinControl architecture showing Excalibur use
case.

Figure 3: Example OdinControl client webpage for Percival.

the FR places a frame into shared memory, it sends a mes-
sage over the ready channel, the FP consumes the frame and
once it is finished passes a message over the release channel
allowing the FR to re-use the frame memory. The use and
re-use of shared memory reduces the copying of large data
blobs and increases data throughput. This logic is shown
visually in Fig. 4.

The overall concept is to allow a scalable, parallel data
acquisition stack writing data to a individual files in a shared
network location. This allows fine tuning of the process
nodes for a given detector system, based on the image size
and frame rate, to make sure the beamline has the capacity to
carry out its experiments and minimise the data acquisition
bottleneck.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA212

Experiment Control
TUPHA212

967

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 4: OdinData architecture showing Excalibur use case.

Plugins
OdinData is extensible by the implementation of plugins.

The Excalibur detector has a module with two plugins built
against the OdinData library. One for the FR and one for
the FP. These provide the implementation of a decoder of
the raw frame data as well as the processing required to
define the data structure written to disk. As an example,
the Excalibur plugins implement some algorithms [4] to
perform transforms to rotate chunks of the input data, due
to the physical orientation of the chips on the detector. The
implementation of any other detector would simply require
the two plugins to be replaced with equivalents, to process
the output data stream; the surrounding logic would remain
exactly the same.

API
OdinData provides a python library with simple methods

for initialising, configuring and retrieving status from the
FP and FR processes at runtime. These can be integrated
with a wider control system, but can also be used directly in
a simple python script or interactively from a python shell.
This is how OdinData integrates with OdinControl; there is
no special access granted, the interface is generic allowing
it to be integrated with other control systems.

HDF5 Features
To take advantage of the high data rates of modern de-

tectors, OdinData seeks to write data to disk quickly with
minimal processing overhead. To achieve this, the built-in
FileWriterPlugin employs some of the latest features of the
HDF5 library.

The Virtual Dataset (VDS) [7] enables the file writing to
be delegated to a number of independent, parallel processes,
because the data can all be presented as a single file at the
end of an acquisition using VDS to link to the raw datasets.
Secondly, with Single Writer Multiple Reader (SWMR) [7]
functionality, datasets are readable throughout the acquisi-
tion and live processing can be carried out while frames are
still being captured, greatly reducing the overall time to pro-
duce useful data. Though the real benefit comes when these
two features are combined. A VDS can be created anytime

before, during or after and acquisition, independent of when
the raw datasets and created. Then, as soon as the parallel
writers begin writing to each raw file, the data appears in
the VDS as if the processes were all writing to the same file
and can be accessed by data analysis processes in exactly
the same way.

A more straightforward improvement in the form of a data
throughput increase is found by the use of Direct Chunk
Write [7]. With a little extra effort in the formatting of the
data chunk, this allows the writer to skip the processing
pipeline that comes with the standard write method and
write a chunk straight to disk as provided. This reduces the
processing required and limits data copying. For the Eiger
use case specifically, great use is made of the Direct Chunk
Write to allow writing of pre-compressed images from the
detector to file. Due to the considerable data rate of the
detector, compression is used to reduce network and file
writing load by around a factor of four, depending on the
sensor exposure. Reader applications can use Dynamically
Loaded Filters [7] to read the datasets.

USE CASES

Odin is now starting to be integrated with beamline and
lab detector systems at DLS. The most progress has been
made with Eiger and Excalibur. The two implementations
detailed below are quite different from each other, showing
the flexibility of the software.

Excalibur

Excalibur is the first detector to be fully supported by
Odin. It has FR and FP plugins allowing an OdinData pro-
cess to serve each FEM of the detectors, as well as an adapter
for OdinControl to provide a complete HTTP API for con-
trolling the nodes. The latest milestone reached was using
OdinData and OdinControl to acquire 10,000 frames from a
1M detector at 100Hz. The Surface and Interface Diffraction
beamline I07 will be the first to commission an Excalibur
operated with this software stack.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA212

TUPHA212
968

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control



Eiger
The first Eiger detector at DLS is currently being commis-

sioned on the VMXi beamline using OdinData, alongside an
EPICS areaDetector [8] driver used for control only. In this
system, frames are fanned out systematically from the Eiger
ZeroMQ [6] stream to four process nodes, each running an
OdinData stack writing one quarter of the frames. These
raw datasets are then wrapped in a VDS along with the meta
data captured in parallel by a fifth, separate process. This
produces a final HDF5 file containing a single, coherent
view of all the data from an acquisition. It is able to fully
support the 10 Gbit link of the 4M; the bottleneck being
pushing frames down the data link from the detector, rather
than writing them to disk.

CONCLUSION
Odin has the scope to become an integral part of beam-

line controls at DLS. It serves many currently missing use
cases, such as those that involve very high data rates or re-
quire more flexible control. The usage to up to this point
in time has been successful, but there is some way to go
before it can be deployed more widely. The next steps are
to improve stability and to develop some new features re-
quired for future use cases. One of these being the ability to
rewind a scan and continue from part way through, which
will require overwriting specific chunks of data through com-
putation of relative offsets in the HDF5 datasets based on
configuration parameters. This will eventually be integrated
into Malcolm [9], another ongoing development at Diamond
to allow concurrent control of multiple different systems,
specifically for, but not limited to, hardware-triggered scans
and mapping [10] of samples.

REFERENCES
[1] J. Marchal et al., “Excalibur: a small-pixel photon counting

area detector for coherent x-ray diffraction - front-end de-
sign, fabrication and characterisation,” in Journal Of Physics:
Conference Series, vol. 425, pp. 530–533, 2013.

[2] C. B. Wunderer et al., “The percival soft x-ray imager,” in
JINST, vol. 9, 2014.

[3] EIGER X 4M, https://www.dectris.com/products/
eiger/eiger-x-for-synchrotron/details/
eiger-x-4m/.

[4] J. Thompson et al., “Controlling the excalibur detector,” in
Proc. ICALEPCS’11, pp. 894–897.

[5] N. Tartoni et al., “Excalibur: A three million pixels photon
counting area detector for coherent diffraction imaging based
on the medipix3 asic,” in IEEE Nuclear Science Symposium
Conference Record, 2012.

[6] ZeroMQ, http://zeromq.org/.
[7] N. Rees et al., “Developing hdf5 for the synchrotron commu-

nity,” in Proc. ICALEPCS’15, pp. 845–848.
[8] B.Martins, ADEiger,

http://github.com/brunoseivam/ADEiger/.
[9] T. Cobb, M. Basham, G. Knap, C. Mita, and G. Yendell,

“Malcolm: A middlelayer framework for generic continuous
scanning,” in Proc. ICALEPCS’17. paper TUPHA159, this
conference.

[10] R. Walton et al., “Mapping developments at diamond,” in
Proc. ICALEPCS’15, pp. 1111–1114.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA212

Experiment Control
TUPHA212

969

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


