
CREATING INTERACTIVE WEB PAGES FOR NON-PROGRAMMERS*
T. D’Ottavio , P. Dyer, G. Marr, S. Nemesure, Brookhaven National Laboratory, †

Upton, NY, USA

Abstract

This paper describes a new web page creation system
that allows web developers with limited programming ex-
perience to create interactive displays of control system
data. Web pages can be created that display live control
system data updating in real-time, as well as data stored
within our logging/archiving and database sys-
tems. Graphical, tabular, and textual displays are sup-
ported as well as standard interaction techniques via but-
tons, menus and tabs. The developer creates a web page
using a custom web page builder. The builder presents a
web page as a user-defined grid of tiled cells. The devel-
oper chooses the display style of each cell from a list of
available cell types and then customizes its data con-
tent. Final polish can be applied using HTML and
CSS. Specialized tools are available for creating mobile
displays. This paper shows examples of the web pages cre-
ated, and provides a summary of the experience of both the
web developers and users.

INTRODUCTION
The Operations group within the Collider-Accelerator

department at BNL has the job of setting up and running
our many machines in a way that satisfies the physics ex-
periments currently in progress. As part of that job, they
need to communicate the status of the facilities to experi-
menters and internal machine specialists, as well as scien-
tists around the world that are interested in our research.

Our Operations personnel are trained as physicists and
generally have little or no web programming experience.
So, they have had a difficult time over the years putting
together web pages that provide user interaction and live
displays. This paper describes work done to address this
problem. The goal was to put together a web page con-
struction tool that would let a developer create interactive
and live updating web pages without having to understand
web programming beyond some familiarity with HTML
tags and CSS styling. A similar system was developed at
DESY for building synoptic displays [1].

WEB PAGE BUILDER
The approach taken was to construct a web-based tool

that lets the user create and view a web page in a way that
closely matches the way that web page would be displayed.
The user lays out the web page as a grid of tiled cells of
varying sizes. Then the content of each cell is adjusted so
that it either 1) displays data (label, table, chart, etc.), or 2)
provides UI interaction (link, button, menu, etc.). The fin-
ished product is saved in an XML file. An example builder
window is shown in Fig. 1.

Figure 1: Web page construction interface

As seen above, the web page construction tool, which we
call DashBuilder, is itself a web page that contains several
tabs where the user defines various aspects of the web page
that is to be built. Below is a summary of the functionality
on each of the tabs:
 File – The web page description is stored in a file.

This tab shows the file currently being edited and al-
lows for saving, versioning, and switching the file.

 Page – Here a user indicates how frequently the web
page should be updated (1-60 secs). The user can also
specify the tabs to be shown and what should fill them.
A theme can also be applied.

 Grid – This tab specifies the size (number of rows and
columns) of the cell grid that should be used. Here
the user can also specify the relative size of the se-
lected row and column.

 Cell – Here a user defines the size of the selected cell
by specifying the number of rows and columns that
the cell spans. Adjustments can also be made in terms
of width/height percentage and alignment.

 Content – The content of the selected cell is specified
here. Choices include Label, Image, Video, Table,
Link, Web Page, Slide, PPM Select, Time Select,
Web Select, Tree Select, Pet Page, Gpm Monitor,
Logged Data, FDA Plot. Once a choice is selected,
the user can specify details, for example, the path to a
Web Page or the contents of a Table.

 CSS Style – Final polish to the page can be specified
on the CSS tab. Here, all the normal CSS styling rules
apply. Each cell type has a known CSS class name,
or the user can specify a CSS name for a cell.

* Work supported by Brookhaven Science Associates, LLC under Contract
No. DE-SC0012704 with the U.S. Department of Energy.
† Email address dottavio@bnl.gov

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH101

TUSH101
976

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

 Preview – When selected, this tab allows the user to
view the web page as it would be viewed within a sep-
arate browser tab or window.

Cell Content
Much of the UI for the DashBuilder program is devoted

to laying out the interface for the constructed web page.
But it is the number and quality of the cell content types
that are most important in determining the quality of the
web pages produced. Broadly speaking, the cell types fall
into three categories: user interactions, generic displays,
and controls-specific displays.

The Link and the various Select cell types are examples
of user interaction cells. In some cases the interaction af-
fects other cells on the page. For example, a Web Select
cell loads an associated Web Page cell. Generic display
types include the Image, Video, and Web Page cell types.

The controls-specific cell types provide the most im-
portant functionality. They allow the user to display live
or stored data from the control system within labels, tables
and charts. We use a bracket notation, [controls name], to
specify where a live device value should be inserted within
the text of a Label or Table.

Most of the leverage for this builder, however, comes
from reusing existing files and file formats that we have
used for years to support our heavily used, generic appli-
cations. We have three programs that are used for generic
controls display – 1) PET – displays live controls data in a
tabular format, 2) GPM – displays live controls data in a
graphical format, and 3) LogView – displays stored con-
trols data in a graphical format. Each of these programs
has a file format that specifies the specific data to load, and
each has a large set of existing files generated over many
years. Our web page builder is able to read these files and
display them within the Pet Page, Gpm Monitor, and
Logged Data cell types. This capability made it much eas-
ier to build a powerful web page construction tool.

Another important feature of this editor is that the con-
structed web pages can be nested. That is, one saved web
page can be embedded inside another by specifying the
path to the DashBuilder file within a Web Page cell de-
scription. This means that very complex web pages can be
constructed using this design.

System Design
This section describes the infrastructure that is used to

support both the construction and the display of the web
pages produced by this system. As seen in Fig. 2, the sys-
tem uses clients (web browsers) that talk to Java EE serv-
ers. We are currently using a Payara [2] server, which is
based on a GlassFish [3] design.

A key to the system design is the use of web user inter-
face tools provided by the Vaadin Toolkit [4]. This is a
powerful set of tools that allows the developer to construct
web user interfaces by writing code in Java that runs on the
server. At runtime, the Java descriptions are translated into
widget descriptions used by the Google Web Toolkit [5],
which itself translates those descriptions into HTML and
Javascript. Vaadin also supports a wide variety of add-on

tools. We are using the chart and mobile add-ons. The
basic Vaadin tools are free, but add-ons and support require
purchase.

Figure 2: System diagram and tools.

In addition to the Vaadin tools, the system is supported
by our own set of HTTP services, which are used for the
retrieval of data from live devices, and data stored by our
logging and database systems [6].

The server also needs access to the file system. To dis-
play a web page, the server is passed a relative path to a
saved web page description file that contains information
about the page layout and cells to display. And, as noted
above, those cell descriptions often contain pointers to files
created by other generic programs that describe table or
graph displays.

VIEWING WEB PAGES
To display a web page constructed with this system, the

user constructs an HTTP request that points to the saved
web page description file. Fig. 3 shows an example.

Figure 3: A displayed web page.

Web Browser Clients

Vaadin Toolkit

HTML/Javascript

Google Web Toolkit

Display Files

Java EE Server
(Payara/Glassfish)

Live Devices

Stored Data

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH101

User Interfaces and User eXperience (UX)
TUSH101

977

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

A specialized web server, which we call DashServer, was
setup to display the web pages described by the files cre-
ated by the DashBuilder program. The same Java EE tech-
nology described in the previous section is used to display
the web pages.

As can be seen from Fig. 3, web pages produced by this
system can be very complex. This is made possible by the
ability to nest saved web descriptions inside other descrip-
tions. The example above actually uses 11 separate de-
scription files to create the web page. Most of those files
describe what is to be viewed when the user selects one of
the 8 tabs.

The DashServer supports continuous updating of Con-
trols data displayed anywhere on a web page. This is ac-
complished by a client/server polling mechanism built into
the Vaadin toolkit. The server updates its user interface as
needed, and the client periodically polls for a refresh of the
user interface. The polling frequency defaults to every 3
seconds, but the user can adjust this value within a range
of 1 to 60 seconds.

MOBILE WEB PAGES
Over the last few years, there has been a lot of interest in

developing status displays for smartphones. Much of the
system as described allows for web page displays on mod-
ern smartphone web browsers. In addition, Vaadin offers a
mobile toolkit containing specialized user interface widg-
ets that work nicely on mobile displays.

This allows a user to build web pages targeted at mobile
devices. We set up a specialized web server (DashMobile)
that we use to display these mobile web pages. The devel-
oper builds pages targeted at desktop or mobile displays,
and then directs users to one or the other of the servers to
get the correct display.

Several screens from the mobile web application built by
our Operations group are shown in Figs. 4 and 5.

Figure 4: Mobile application start page and menu.

The start page for the application shows the status of the
three major physics programs currently run within the ac-

celerator complex. The background colors indicate the sta-
tus of each program. Clicking on one of the colored areas
will bring up a summary screen for that program. Even
more detail can be obtained by clicking on the Details tab,
which brings up the menu screen shown in Fig. 4. Fig. 5
demonstrates the quality of the tabular and graphical dis-
plays that can be produced by this system.

Figure 5: Mobile application tables and chart.

CONCLUSIONS AND FUTURE WORK
With a few month’s effort, it is possible to put together a

web page creation tool that allows non-programmers to
create status displays that are interactive and complex.
Leverage for us came from utilizing Vaadin and Java EE
technology and from reusing tabular and graphical file for-
mats that already existed within our facility.

Currently, the developed web pages do a good job of ad-
justing to various window sizes on desktop displays and
generally do the right thing when the user adjusts a window
size. Ultimately, however, we would like the web page de-
veloper to be able to build web pages whose content auto-
matically adjusts to the platform where the content is being
displayed – mobile or desktop.

REFERENCES
[1] Bacher, R. “Light-Weight Web-Based Control Appli-

cations with the Web2cToolkit” in Proc.
ICALEPCS’09, Kobe, Japan, Oct. 2009, paper
THP110, pp. 889-891.

[2] Wikipedia, GlassFish, https://en.wikipe-
dia.org/wiki/GlassFish

[3] Payara, https://www.payara.fish

[4] Vaadin, https://vaadin.com

[5] Wikipedia, Google Web Toolkit, https://en.wikipe-
dia.org/wiki/Google_Web_Toolkit

[6] D’Ottavio, T, Brown, K., Fernando, A, Nemesure, S,
“Building Controls Applications Using HTTP Ser-
vices” ICALEPCS’17, Barcelona, Spain, Oct. 2017, pa-
per THUPHA157, this conference.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH101

TUSH101
978

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

