
PShell: FROM SLS BEAMLINES TO THE SwissFEL CONTROL ROOM

A. Gobbo†, S. Ebner
Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.

Abstract
PShell is a DAQ scripting tool developed at PSI, in use

since beginning of 2015. Initially a beamline data acquisi-
tion system at SLS, PShell is being used by various
groups for creating tools for the commissioning and oper-
ation of the SwissFEL machine.

New features were added to meet SwissFEL require-
ments, such as supporting beam synchronous data and
streamed cameras. In addition to providing a workbench
for developing data acquisition logic, PShell also offers a
convenient way to create user interfaces (“panels”) to
trigger the execution of logic. In order to improve user
experience and to simplify operation tools these panels
can also be launched and used as stand-alone applications.

INTRODUCTION
The PShell project started in 2014. Data acquisition

software is not standardized at PSI and the Controls
Group aimed selecting a preferred solution, to which it
could provide long term support. This tool was meant to
be offered as an alternative to new systems, and also for
replacing existing aged or ad-hoc solutions. It should be a
natural successor of FDA, another DAQ software devel-
oped in-house, which had a graphical and declarative
programming style, but showing limitations, as many use
cases fit better the use of scripting.

The make or buy decision was not trivial. The group
spent time assessing existing alternatives such as GDA
[1], and Sardana [2], but a different concept was aimed. It
was intended a lighter and more flexible solution, based
in modern tools, aligned with the standard protocols at
PSI: REST [3] for service configuration, ZMQ [4] for
data streaming, EPICS for hardware access. Furthermore,
a tool not attached to a GUI toolkit, not using any heavy
framework. The GUI aspects should be entirely detached
and the final goal is the use of web and mobile interfaces.
Even if the main GUI environment (called “workbench”)
is currently Swing-based, it is a stepping stone towards a
full functional web based front end.

Another non trivial decision was the technology to use
– Java or Python. Java offers a more stable development
platform, allowing more control of the project in the long
time, providing greater reliability due to the nearly inex-
istence of native code, and also providing frictionless
updates – what was particularly interesting for a server
software intended to have high availability. Java offers
great advantages regarding deployment as well, compar-
ing to Python. Furthermore, it would simplify rich client
development and enable scripting on any dynamic lan-
guage supported by the Java scripting API, such as Py-
thon (with Jython 2.7 [4]) or JavaScript. The Python plat-

form have, in other hand, NumPy and the scientific soft-
ware stack based on it, which would enable data analysis
embedded in the data acquisition scripts, using libraries
known to the user. NumPy cannot be loaded directly in
Jython because it contains native libraries.

The reasoning for the choice of Java was that, even in a
pure-Python solution we cannot avoid interfacing to ex-
ternal data analysis software: for performance reasons,
and also for interacting with code written in MATLAB or
a different version of Python. Another push for the Java
solution is the existence of ways to run CPython code in
the same process with little overhead, such as JEP [5],
which is a solution for non-demanding cases.

ARCHITECTURE
The project is based on Java 8. In the beginning of the

project it was clear the great variety of uses of this soft-
ware, as different beamlines had different experiences,
tools and expectations. The focus was standardizing the
logic and data layer, but leaving the users free on the
choice of GUI. In this way even if beamlines have differ-
ent preferences for interfaces, the DAQ code is homoge-
neous.

To reach this goal PShell provides architectural free-
dom. Logic is executed by a core engine, and interfaces
can be CLI (using the command line interface), GUI (the
embedded workbench, running on the same process as the
core), remote (a custom developed application), web
(using the built-in web client or a custom web applica-
tion) or mixed. The core engine can also be embedded in
other Java applications.

The workbench can be the user front end, or else just
used as a development environment. PShell can be exe-
cuted then in pure server mode, having custom user
graphical interfaces.

Remote access benefit from a built-in web server and a
REST interface. Writing client code is simple. Remote
calls typically trigger and monitor script execution, evalu-
ate interpreter statements, monitor devices and access
data.

Regardless the architectural choice, PShell runs in a
single process, and is deployed as a single jar file. Figure
1 shows a diagram of the relations between the system
components.

Core Engine
The core engine consists of:
 Script interpreter based on the Java Scripting API.

Python is the primary language (Jython 2.7) but Ja-
vaScript and Groovy are also supported. A set of
built-in functions is available for user scripts, simpli-
fying scanning, plotting, data persistence and data ___

† alexandre.gobbo@psi.ch

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH102

User Interfaces and User eXperience (UX)
TUSH102

979

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

analysis. Some function names are inspired by SPEC
[6].

 A data persistence manager, having HDF5 [7] as the
default file format, but also supporting text files. The
data model in PShell assumes a hierarchical storage,
and extension libraries can add support to other hier-
archical file formats. Scan data can be automatically
saved using data layout schemas. There are pre-
defined layouts, but they can also be customized.

 A plugin manager for loading extensions and
plugins, in the form of .jar files, or else .java files
dynamically compiled.

 A global device pool. Scripts can reference devices
declared in the device pool and can create new ones.
EPICS, Modbus, serial, sockets, PSI detectors and
stream cameras are supported out of the box but new
device families may be added in extensions.

 Automatic versioning system based on GIT. A local
repository includes the scripts, configuration files,
and the user plugins. Files are automatically commit-
ted every time scripts are executed. The local reposi-
tory can be automatically pushed to a remote GIT re-
pository.

 A command line console interface.

Server
PShell has multiple server options. It contains an em-

bedded web server and a REST interface which provides
access to all core functionalities. The standard web client
allows controlling script execution and features an inter-
active console, plotting and data access components. A
data server, based on ZMQ, streams out scan data and
also provides access to data files. Finally, a raw socket
connection gives access to the console.

The web client technology is currently based on
HTML5, jQuery [8], Flot [9] and Bootstrap [10].

Workbench
The GUI workbench constitutes a development envi-

ronment for scripts and also an alternative for end user
interface, providing:
 Script editor with code auto-completion.
 Advanced console with auto-completion and com-

mand history.
 Script execution control and debugging.
 Plotting environment.
 Data browser.
 Image renderer.
 System configuration panels.
 Device configuration and supervising panels.

Add-ons
Other than scripts, the system can be customized with

extensions and plugins.
Extensions are merely .jar files, placed in a specific

folder and added to the class path. They can depend on
PShell .jar file or not. Two different types of extensions
can be created:

 Simple libraries, making classes available to the core
and scripts at run time. For example libraries can add
new family of devices, data file formats or mathe-
matical algorithms.

 Workbench components, adding or replacing func-
tionality using Java’s Service Provider Interfaces
[11], a standard way to create extensible applications
in Java. By implementing certain interfaces defined
in PShell, and declaring them in a configuration file
within the extension .jar file, the feature can be iden-
tified and used. Examples are registering a new plot
types or a new logic executing components in the
workbench.

User plugins must contain a class implementing the
Plugin interface. Through this interface the plugin receive
events from the core engine, have access to the current
context, control the execution of scripts, evaluate com-
mands in the interpreter and access the device pool.
Plugins should be placed in a specific folder. They can be
in two forms:
 Static: a project compiled into a .jar file.
 Dynamic: a single .java file, implementing the

Plugin interface, compiled on-the-fly, as needed
(recompiled if the source file changes).

Plugins can be configured to be loaded on start-up, and
can be dynamically reloaded in the workbench.

Figure 1: Component diagram

Panels
Advanced users can work directly on the workbench,

but custom graphical user interfaces are useful for guiding
and simplifying the user experience, for inputting and
checking script parameters, for better presenting the re-
sults, and also for hiding scripts from end users. A simple
method for creating custom interfaces was aimed.

Users can quickly learn coding DAQ scripts, and ideal-
ly they should be able to create custom GUIs to trigger
those scripts just as easily, in the same way they can cre-
ate synoptic caQtDM [12] panels with no programming
background.

PShell proposes a straightforward solution to create end
user graphical interfaces to DAQ scripts. It is called “pan-
el”, a special type of graphical plugin that can be loaded
to the workbench, and also can be executed detached, as a

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH102

TUSH102
980

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

stand-alone application. When detached, the plugin runs
in its own process and holds an instance of the core en-
gine, as if the core was running embedded in an external
application. Detached mode is selected by a command
line option, with the name of the panel to be loaded.

A panel consist of a single .java file, dynamically com-
piled as needed. Panels can be created and loaded within
the workbench, where they can also be edited. However
the suggest way to edit panels is by using Netbeans Swing
GUI editor [13], which is a very user-friendly environ-
ment for GUI development in Java. Swing components
are drag and drop to the user panel. PShell internal widg-
ets are also available for composing these interfaces - for
plotting, image rendering, and device control. The panel
can access the core engine and easily control the execu-
tion of scripts, in an asynchronous fashion.

It was desirable that the panel inherits JPanel (so it can
be placed in any Swing container), but also that it inherits
a Plugin class, so that it contains all methods needed to
interface the core. The use of auxiliary classes in order to
access plugin functionality would make the panel pro-
gramming more difficult for users with no experience in
Java: plugin methods should be directly available in code
completion. The intended design was possible by making
use of “default methods”, introduced in Java8. All plugin
functionality is coded in default methods of the Plugin
interface, implemented by Panel class. Java8 does not
support multiple inheritance of state, just of behavior. But
assuming that there is only one running instance of a
plugin, it is possible to build a global dictionary of plugin
states, in fact realizing a multiple inheritance of state.

Data Analysis
Online data analysis capabilities were the greatest chal-

lenge for proposing a Java-based DAQ solution. Different
solutions were implemented to deal with the problem.

The first need was a set of basic mathematical func-
tions, accessible to scripts, to deal with the common cal-
culations following a scan, in particular typical beamline
alignment problems: fitting (polynomial, harmonic,
Gaussian), peak search, least square optimization, deriva-
tive, interpolation, FFT, and statistical functions. These
were implemented with the use of Apache Commons
Math [14]. Façade methods were written to provide sim-
ple access to this functionality on user scripts.

The second need was imaging processing algorithms.
PShell includes ImageJ [15] binaries, and provide many
helper functions for scripts using ImageJ, such as image
conversions, basic operators, convolution, Euclidean
distance map, thresholding, binary operations, FFT and
particle analysis.

Finally, it remains the problem of interacting with CPy-
thon code using NumPy/SciPy. The issue is not running
externalized data analysis (in different processes), which
can be done for example over ZMQ communication, but
finding ways of calling CPython code directly from
scripts. PShell includes functions to start CPython as an
external process, executing a given function with parame-
ters and getting results back. This method is simple to use

but not performant, only fitting cases when the overhead
of instantiating Python is negligible. A better solution is
obtained by using JEP. A CPython interpreter is created in
the same process, sharing the same memory space. With
simple wrapper calls, CPython code can be called directly
from DAQ scripts. The overhead is just a memory copy
each time Java arrays are transformed to/from a NumPy
array. JEP supports both CPython 2 and 3, no matter
which DAQ scripting language is used.

FIRST DEPLOYMENTS AT SLS
The first deployment of PShell was on beamline

X03DA (Pearl) at SLS, in production since February
2015, with an increasing scope over time. All user inter-
faces for this beamline data acquisition are done within
the workbench. There are 4 typical DAQ experiments at
X03DA. For each one a specific panel has been created,
so most user operation is straightforward. Non-standard
experiments are scripted. Figure 2 shows a screenshot of
user interface at X03DA.

Figure 2: PShell workbench at X03DA beamline.

Next systems were installed in X07MA(X-Treme), and
X11MA (SIM) beamlines. In both cases it was imple-
mented scripting and user interfaces for DAQ.

The scope of use in some beamlines is different: on
X06DA (PX3) it is used mainly for beamline optics
alignment, having its functions accessible to the beamline
control software. In this case PShell can be used in server
mode. On X12SA (CSAXS) it has been used for device
test and commissioning.

Currently X07MB (Phoenix) and X10DA (SuperXAS)
are in the process of migrating from FDA to PShell. In
order to facilitate this transition a plugin was included to
load and execute FDA configuration files, and also to
convert those files into PShell scripts.

PShell AT SwissFEL
In the SwissFEL control room most synoptic display

panels are implemented using caQtDM. Although caQ-
tDM enables many advanced operations - for example by
running shell scripts - sometimes it is not enough to build
more advanced utilities, for commissioning, machine
development or routine operation. In those cases a full-
featured programming language is more appropriate.
PShell is used as an alternative, proposing a structured

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH102

User Interfaces and User eXperience (UX)
TUSH102

981

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

way to produce scripted logic, and also user interfaces. It
has been used by various groups (Operations, RF, Diag-
nostics and Photonics), both to execute one-time scans,
for testing and commissioning, and also to create perma-
nent operator utilities.

PShell is used in SwissFEL control room since May
2016. New requirements appeared with the use at Swiss-
FEL: support to new families of devices and adaptation to
the use in a control room environment.

Beam-Synchronous Devices and Data Streaming
The first adaptation for SwissFEL was integrating

beam-synchronous data, streamed over ZMQ at up to
100Hz [16], using the in-house developed BSREAD. This
library provides data serialization and stream control over
ZMQ. The PShell device model was adapted to support
beam-synchronous data, and so were the scanning func-
tions – which can now mix traditional and streamed de-
vices. New functions have been added to deal specifically
with beam-synchronous data.

SwissFEL cameras are accessed through servers, that
stream out images and image processing data also using
BSREAD. The purpose of these servers is to provide
standard measures (such as characterization of the beam)
at 100Hz.

PShell features an imaging framework that allows in-
cluding new imaging sources. The support to the camera
servers was added, including access to the image pro-
cessing data. EPICS, beam-synchronous and imaging data
can be used together in the same DAQ process. Figure 3
shows the edition of a DAQ script using mixed data
sources.

Figure 3: script mixing device and imaging sources.

User Interfaces
In the SwissFEL control room, the operation tools are

organized in a start menu called “launcher”, which is
present in all operation consoles. Each menu item starts a
specialized window – such as a synoptic panel. This does
not fit well with the use of PShell workbench – which is
suited to centralize all user operation. In order to adapt to
this organization of tools, it was implemented the use of
panel plugins in “detached mode”. For each script imple-
menting a user tool, a matching panel is created. The
“launcher” menu starts the panels detached, which are
perceived as a stand-alone window. The workbench is

therefore used as a development environment but it is not
seen by the end user (operator). Figure 4 shows a de-
tached panel controlling a DAQ script.

Figure 4: Detached panel plugin.

Multiple Instances
A big difference comparing to beamline operation is

that commonly in beamlines there is a single PShell pro-
cess, while in the control room there are many.

Each PShell deployment is defined by a configuration
structure in a repository, pushed to a remote GIT server.
We called it a “context”. PShell execution is typically
“exclusive” - only one instance of PShell runs per con-
text. In this way we ensure no conflicting concurrent
access is done, by running only one high-level DAQ
script at a time. Parallelism, if needed, is handled by a
specific API, allowing scripts forking concurrent threads.
We can have multiple visualization clients (local, remote,
web), but a single instance of the core. This behaviour fits
well beamline operation.

In in a multi-console control room environment users
are expected to work on multiple panels simultaneously,
having access to different aspects of the machine. Creat-
ing one context for each operator panel would be exces-
sive. For this kind of use, PShell can be started also in
“local mode”, where the context is shared between multi-
ple running instances. Operator panels are launched in
local mode, sharing therefore the same system and device
configuration.

The control room has also a server instance of PShell,
running in exclusive mode, enabling remote access. The
server is needed because some DAQ scripts are triggered
by client software, such as caQtDM panels and external
Python scripts. The server instance can be inspected
through its web interface.

By targeting the server REST interface, clients are able
to start script execution and display ongoing data and
results. In the case of caQtDM, it is easy to make use of
the REST interface to trigger actions, but caQtDM cannot
use it to read back scan data and plot it. The interface is,
in this case, done through EPICS channels. These chan-
nels can be created by PShell itself with a Channel Access
Server [17]. The creation of EPICS channels to publish
results is straightforward, and so it streaming out results
over ZMQ streams.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH102

TUSH102
982

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

OTHER USES

Proscan
An environment for automated execution of test scripts

for PROSCAN has been implemented as a PShell plugin.
A test database containing devices and test scripts is load-
ed and displayed in a table. A test plan defines a sequence
of tests (or groups of parallel execution). Test plans can
be saved and reloaded. They are intended to run automati-
cally, validating different aspects of the facility in the
course of maintenance days.

SwissFEL ESB-MX Sample Changer
 PShell is the development platform for the control

software of the new MX sample changer system, in de-
velopment at PSI to equip the ESB-MX instrument for
SwissFEL. This project benefits from the existing imag-
ing functionalities, inherited from ImageJ, the supported
devices, and from the extensible device model, which
allows to quickly integrate new hardware. Furthermore,
the use of workbench as a the prototyping tool enables a
smooth transition from prototyping to the final product,
allowing people involved in the project to better under-
stand the system as each process is implemented as a
single Python script.

CONCLUSION
During the past years PShell has been used in produc-

tion environment and has grown in scope. Today it reach-
es a stable state, where it is able to cope with a wide range
of needs. The project development costs were low thanks
to the number of very high quality libraries available for
the Java platform, and the power of Java IDEs.

Efforts will be made in the future for enhancing the
web interface, in particularly improving the plotting ca-
pabilities to match the workbench’s, aligning it to more
modern technologies used within the group such as Poly-
mer [18] and Plotly [19].

The desktop interfaces remain necessary though. The
creation of end user interfaces was much simplified with
the use of panel plugins. This type GUI development can
be carried on even by users with no background in soft-
ware development.

At SLS an increase in the number of deployments is
expected, as FDA is planned to be decommissioned from
other beamlines and new beamline DAQ systems are
being discussed.

At SwissFEL more emphasis will be put on enabling
the users creating their own graphical interfaces, in sim-
plifying device configuration (for example auto-
completing EPICS channel names), and also in providing
better integration with CPython.

A seamless use of CPython remains a major objective.
The use of JEP enables directly calling CPython code
with little overhead and boilerplate code, but writing
wrapper functions remains a difficulty to users, in particu-
larly understanding the conversion between NumPy and
Java arrays. Two possibilities remain to be explored. The

first is JyNI [20], a project that proposes directly import-
ing native Python modules into Jython. This project is still
in beta state, but should be assessed when a first version
is released.

Finally, an alternative is PShell not targeting the Java
scripting framework for running scripts, but calling CPy-
thon in interactive mode – in other words functioning as
an IDE for Python development. PShell built-in functions
should be adapted. The scan library has already been
ported to pure Python. The plotting environment can be
accessed remotely (over ZMQ) and the scanning and
plotting functions can be adapted to use this server inter-
face. The Java device classes wouldn’t be available, but
pure Python counterparts could be created in order the
scripts to be compatible.

ACKNOWLEDGEMENT
The authors would like to thank all the users that have

helped this project to reach a mature state, for their pa-
tience in the earlier stages. In particularly, for the especial
attentiveness and constructive criticism: Matthias Kurt
Muntwiler, Didier Voulot, Jan Gui-Hyon Dreiser, Cinthia
Piamonteze, Roger Kalt, Luka Debenjak and Marco Boc-
cioli.

REFERENCES
[1] GDA, http://www.opengda.org
[2] Sardana, http://www.sardana-controls.org
[3] ZMQ, http://zeromq.org
[4] Jython: Python for the Java Platform,

http://www.jython.org
[5] JEP, https://github.com/ninia/jep
[6] SPEC, http://certif.com

[7] The HDF Group. Hierarchical Data Format, version 5,
1997-2017, https://www.hdfgroup.org/hdf5

[8] jQuery, https://jquery.com
[9] Flot, http://www.flotcharts.org

[10] Bootstrap, http://getbootstrap.com
[11] The Java Tutorials, The Extension Mechanism,

http://docs.oracle.com/javase/tutorial/ext
[12] caQtDM, epics.web.psi.ch/software/caqtdm
[13] Swing GUI Builder (formerly Project Matisse),

http://netbeans.org/features/java/swing.html
[14] Apache Commons Math,

http://commons.apache.org/math
[15] C. Schneider et al., "NIH Image to ImageJ: 25 years of

image analysis", Nature Methods, vol. 9, no. 7, 2012, pp.
671-675.

[16] C. Milne et al., “SwissFEL: The Swiss X-ray Free Electron
Laser”, Applied Sciences (Switzerland), vol. 7, article no.
720, 2017.

[17] CAS: Channel Access Server Library,
http://www.aps.anl.gov/epics/extensions/cas

[18] Polymer, https://www.polymer-project.org
[19] Plotly, https://plot.ly
[20] Jython Native Interface, http://jyni.org

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH102

User Interfaces and User eXperience (UX)
TUSH102

983

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

