
SOFTWARE ARCHITECTURE FOR BEAMLINE AUTOMATION – VMXi
USE-CASE

C. J. Sharpe, Diamond Light Source Ltd, Oxfordshire, UK.

Abstract
Versatile Macromolecular in-situ (VMXi) is the first

beamline at Diamond Light Source (DLS) to be entirely
automated with no direct user interaction to set up and
control experiments. This marks a radical departure from
other beamlines at the facility and it has presented a sig-
nificant design challenge to General Data Acquisition
(GDA), the in-house software that manages beamline data
collection. GDA has become a reactive controller for
continual, uninterrupted processing of all user experi-
ments. A major achievement has been to demonstrate that
it is possible to successfully deliver a suitable architectur-
al implementation for automation developed within a
standard integrate development environment (IDE). There
is no need for specialised software or a domain specific
language for automation. The objective is to: review
VMXi project with the emphasis on hardware configura-
tion and experiment processing; describe the software and
control architecture for automation; and provide a general
set of guidelines for developing software for automation
at a scientific facility.

VMXI OVERVIEW
In 2013 I02 - one of several MX [1] beamlines at DLS

[2] - was selected for a major hardware upgrade. The
scientific driver for the new beamline was to make it
specialised for in-situ diffraction of crystallised macromo-
lecular samples [3]. Multiple crystals of purified samples
are grown under different chemical conditions within
wells on crystallisation plates. Crystallisation experiments
usually fall into two distinct stages: screening and data
collection. Screening involves exposing a plate to X-rays
to discover if any samples diffract. Data collection aims to
maximise diffraction information output by applying a
wide range of X-ray parameters on plate samples. One
plate has many samples so that a great volume of data can
be generated and processed in a concentrated period of
beam time. A plate is designed for high throughput and
robot handling. The new beamline VMXi [4] fully ex-
ploits this so that many plates can be stored at a time and
continually processed, vastly increasing experiment
throughput and optimising beam use. A schematic of the
VMXi end station is shown in Fig.1 without the radiation
shielding. Plates are sent to VMXi are stored in two tem-
perature controlled storage units (Rock Imager 1000,
Formulatrix) each storing up to 750 plates. Plates are
conveyed through the radiation shielding to a local stor-
age area within the data collection environment. This
storage area can hold up to 12 plates and serves as a buff-
er for quick loading and unloading of plates to the goni-
ometer.

Figure 1: VMXi End Station.

The data collection environment hardware consists of a
bespoke goniometer developed at DLS that holds a plate
with submicron precision; the latest detector technology
(Eiger 4M, Dectris AG); a fast shutter (operating at 4
milliseconds opening time); and a retractable, high resolu-
tion On Axis Viewing system (OAV) for sample imaging.
VMXi is a high flux micro focus beamline to achieve
high sample throughput. In-situ experiments are conduct-
ed at room temperature and when crystals are exposed to
X-rays they are destroyed in milliseconds. The high spec-
ification detector and fast shutter optimise the diffraction
information captured under these conditions.

DATA ACQUISITION SOFTWARE
The GDA [5] framework is software developed using

Eclipse Java IDE [6] and deployed across beamlines at
DLS to enable a high level interface for users to conduct
experiments and collect data. A user runs experiments
through GDA on site or (as is the case on MX beamlines)
off-site through a remote client.

GDA is an implementation of a client server model.
The client is an Eclipse RCP that provides a graphical
interface through which a user can control and move
beamline hardware and execute experiments. The server
has many components but the main features to highlight
are: Java Channel Access plugin to communicate with
EPICS IOCs [7] (the hardware control layer); Java objects
that are an interface to beamline hardware required for
experiments; and a Jython server to run and execute
scripts written in Python syntax. Taken as a whole scripts
define the operational functionality of a beamline and as
such are a crucial resource; in essence they are high level

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEBPL04

WEBPL04
1054

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

management and control of the beamline for experiments.
Scripts are written by software developers, beamline staff,
and users.

AUTOMATION
A fundamental requirement for VMXi was automation.

In terms of an operational objective this means continual
processing of plates without interruption for several
weeks at a time - as long as there are plates available to be
processed. Although not explicitly stated, it was assumed
that GDA could be readily adapted to automate a beam-
line. However, VMXi breaks the client server model as
there is no direct, dynamic user interaction with the beam-
line. Synchweb [8] is a web interface used at DLS
through which users define data collection experiments.
This information is persisted in ISPyB [9], a database
developed specifically for the MX experiment pipeline.
Users have no further involvement in the experiment after
a plate is scheduled for data collection. At some point in
the future, GDA would manage the conveyance of a
scheduled plate to the beamline and process it according
to the user experiment parameters in ISPyB. GDA must
perform this task repeatedly, indefinitely, and without
failing.

ARCHITECTURAL MODEL
Software design for automation falls squarely is in the

domain of Artificial Intelligence (AI) [10,11]. It is a ma-
ture technology that has been successfully applied to
many different and challenging real world control prob-
lems - this includes automating industrial manufacturing
processes. There is nothing new or especially novel in the
management and of control VMXi - or any similar beam-
line for that matter - that prevents it functioning as an
industrial process by application of the same AI princi-
ples. All AI architectures are an arrangement of three
basic capabilities, Sense, Plan and Act (SPA), which ena-
ble an agent to function autonomously in its operational
environment.
 Sense – excitation of a sensor attuned to sense the

state of some artefact in the environment and feeding
sensed state data in to an agent.

 Plan – Updating the state of a global plan with the
sensed data, and use this plan to generate a control
action.

 Act - present the control action to the agent actuators
and do the action.

SOFTWARE DESIGN
The overall high level control and management of

VMXi is framed conceptually in terms of SPA. The archi-
tectural design is a specification of these basic building
blocks and how they are wired together.

High Level Planning
A Data Collection Plan is encapsulated in user experi-

ment parameters, including the state in to which the
beamline needs to be set to perform an experiment. This

plan is persisted in ISPyB and is required only when the
plate associated to it is loaded and ready to be shot. What
plate to load from the storage unit when there are hun-
dreds plates in a scheduled state is a dynamic and com-
plex process that forms a Load Plan. There is a wide crite-
rion that informs how this Load Plan is ordered and re-
ordered, but the reasoning is not important to GDA, only
the end result - the plate to load next. These plan elements
are the Plan component, which is external to GDA. What
is required is to get Plan information into GDA to drive its
actions.

Low Level Control
The complexity of an environment indicates the extent

of low level control and real time reactiveness required by
GDA to deal with sudden and unexpected events; this
does not require sophisticated behaviour. (As it can be
observed from the natural world, simple creatures func-
tion perfectly well in a highly complex, dynamic envi-
ronment without higher level cognitive ability). In VMXi
any hardware that can be directly controlled by GDA is
considered a part of the internal environment. Any re-
source required by GDA to function is a part of the exter-
nal environment. In general GDA must be robust and act
in a timely and controlled manner to any fault that may
occur in either environment. GDA initialises a control
action and monitors the progress of the action, but it is not
responsible for performing action execution and low level
control.

Agent Design
Moving the Plan component out of GDA leaves the

Sense and Act components to be wired together. This
creates a Reactive Controller, a standard AI architectural
model. The model and model integrity provides a blue
print for agent design. Its attributes are:
 A tight coupling between what is sensed and the ac-

tion generated.
 It is stateless - there in no internal representation of

the world.
 It should not execute any computationally difficult or

intensive task that is an impediment to agent reac-
tiveness.

The overall robustness of GDA is greatly enhanced by
this model. If there is a catastrophic failure in the system
(for example the server on which GDA is hosted goes
down), agent performance is unaffected after recovery
and restart. There is no state to recover and reconstruct, an
agent will behave exactly as it did before the failure.

VMXi is logically separated into two distinct tasks: one
task to manage the movement of plates; and another task
to set up the beamline and collect data from a plate. Ac-
cordingly there is an agent dedicated to perform each
respective task. Agents are situated in the internal envi-
ronment as previously described; they initiate and control
what and when actions are initiated and by extension a
pre-determined response can be implemented to deal with
any failure to complete an action.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEBPL04

Experiment Control
WEBPL04

1055

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Sample Handling Agent
Sample handling involves synchronised co-ordination

of several separate pieces of hardware to move plates
around the beamline. The micro-management and co-
ordination of sample handling hardware is the responsibil-
ity of the low level control layer. An interface to the low
level control program is a set of four EPICS process vari-
ables (PVs) that represent high level sample handling
actions.

 Load from a storage unit to local storage.
 Load from local storage to goniometer.
 Unload from goniometer to local storage.
 Unload from local storage to a storage unit.

All high level sample handling actions implement the
same control sequence:

 Set the PV to trigger the low level control pro-
gram with plate source and/or plate destination
parameters if required.

 Monitor the running state of the low level pro-
gram.

 Set a flag to indicate the low level program has
finished.

The low level program does not return a value after it
finishes. Additional steps are added to check that any of
the sample handling hardware is in a fault state.

 Set PV to retrieve the sample handling fault
state.

 If a fault value is returned set a flag to indicate a
hardware fault has occurred.

The Sample Handling agent determines which of the
four actions to select at any given point in time and en-
sures exactly one action at a time is executed. Brooks’s
subsumption architecture [12] is the controller for the
Sample Handling agent. It defines the agent as a hierarchy
of behavioural layers. The higher the behaviour layer the
greater the priority of its behaviour – in the terminology
higher level layers subsume lower level layers. Behav-
iours are entirely modular, which makes it straight for-
ward to incorporate new behavioural layers into the con-
troller. This architecture is recommended where the over-
all behaviour of the controller is dedicated to doing a
single task composed of a small number of behavioural
layers.

Sensors data is input to behaviour layers in parallel. A
behaviour layer is then said to be ‘fired’ if one of its sen-
sor inputs has been excited. The sensed environment state
is matched against a set of conditional rules that map to
one candidate action from a finite set of actions for the
behaviour. The rules are hierarchical and entirely deter-
ministic. The order of these rules does have an impact on
the emergent behaviour of the controller. If two behav-
iour layers are fired at the same time and two actions are
generated, the higher level behaviour supresses the input
of lower level behaviours and its actions is presented to
the actuator. An inhibit signal can be fed into to a sensor
so its output is prevented from firing a behaviour layer.

The Sample Handling agent controller shown in Fig. 2
is an adaption of the subsumption architecture.

Figure 2: Sample Handling Agent Controller.

Sample Conveyance is the lowest level behaviour layer.
Its goal is to convey plates to and from the beamline.
Sensor inputs actively get state data from two information
sources. The Load Plan service returns a plate barcode of
the plate to load next into local storage. This information
is used to retrieve from ISPyB plate state details for that
plate. ISPyB is also requested to return plate state details
of all plates in the data collection environment. Sensor
input is fed concurrently to Sample Conveyance. A Sam-
ple Conveyance rules layer maps the sensed state to a rule
in its rule set that represents one of the four high level
sample handling actions.

The Action Executor executes sample handling actions
passed in to it and monitors whether the low level pro-
gram finished flag has been set. The action is executed on
a separate processing thread which allows for the main
controller to gather Sensor data while an action is execut-
ing. Before an action is executed all Sensor output is
inhibited to all behaviour layers. This guarantees that one
conveyance action is executed at a time. After the action
has executed all Sensor output is uninhibited.

Plate location state is updated in ISPyB just before the
Action Executor executes a conveyance action, and im-
mediately after a conveyance action has successfully
completed. It is critical plate location state matches its
physical location. If plate location state is not correct then
Sample Handling agent may select an undesirable action.

Robustness is the highest level behaviour layer. It pro-
tects plates and the sample handling hardware in a con-
trolled and robust manner in the event of an internal fault
caused during sample conveyance. An error value is set at
the controls layer if there is any fault event at any point
during sample handling. The Robustness rules layer exe-
cutes a set of actions to generate a fault report, gathering
relevant state information from the low level sample han-
dling controllers. This fault report is then broadcast to
support staff. Input layers are inhibited and the controller
is safely stopped. When the fault is rectified it is then a
manual process to physically move a plate to the correct
location, and ensure the plate’s location state is consistent
with that in ISPyB. The controller is manually restarted,
and the input signal to the Conveyance layer uninhibited
by support staff.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEBPL04

WEBPL04
1056

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

Data Collection Agent
Data Collection first puts the beamline in to a state

ready for data collection and then simultaneously moves
the detector, shutter and goniometer to collect data.
Hardware is tightly packed in the data collection envi-
ronment and has a potential for a collision. To avoid colli-
sions a set of well defined-routines move hardware in the
mini-hutch to pre-set safe positions for a given task, each
routine verified through exhaustive testing.

It is difficult to write concise code to synchronise the
movement of hardware so that it collects data at the cor-
rect place and at the correct time. As previously stated,
GDA should initiate and monitor actions and no more.
VMXi utilises a part of a major project [13] developed at
DLS that pushes configuration, management and syn-
chronisation of hardware for data collection in to hard-
ware controllers.

Figure 3: Sample Handling Agent Controller.

The data collection agent controller shown at Fig. 3 is
structured around a data collection algorithm specified by
beamline staff. A layer is a subset of steps in the algo-
rithm; they are not hierarchical and are processed in order.
The beamline hardware is moved to a set safe state at
each layer as required by the action to be performed. After
one layer has completed its steps in the algorithm, control
is passed on to the next layer.

A Sensor gets plate state from ISPyB. The sensed state
is an input in to the Data Collection manager layer. If a
plate is sensed to be on the goniometer and it is ready to
be shot, this initiates a data collection. All the user exper-
iment parameters for the plate are requested from ISPyB.
When they are returned they are passed in to the Plate
Manager layer. The user experiment parameters are
grouped by well. The Plate Manager is then responsible
for moving the plate to each well on the plate. After mov-
ing to a well, the well data collection parameters are
passed in to the Well Manager. Its role is to generate the
real motor and hardware controller values for each data
collection in the well. A plate may have been stored for
weeks at a time before data collection. In that time a crys-
tal may have grown. A crystal may move during sample
handling, or through the effect of gravity as plates are
kept upright in local storage. Image matching is per-
formed on the original well image and the well image

taken from the On Axis Viewing Camera. It checks the
quality of a match between the two images and generates
a delta. This value is applied to the original data collec-
tion points marked by a user on the image to correct for
crystal displacement. Computationally this is a very in-
tensive task. To keep model integrity for a reactive agent,
Image Matching is made an external service. Individual
data collections are then passed in to the Scan Manager.
The hardware controllers are set up for a data collection.
The Scan Manager sends a signal to the hardware control-
lers to collect data. After this is completed, control returns
to the Well Manager and the next data collection in the
well is processed.

After all data collections in a well are processed, con-
trol returns to the Plate Manager. It moves to the next well
on the plate - and so on and so forth until all data is col-
lected on the plate and control returns to the Data Collec-
tion manager. The plate is then ready to be unloaded from
the goniometer.

Data collection agent robustness is complicated by the
fact that it is dependent on a variety of software and
hardware resources internal and external to GDA. There
is no one uniform response to deal with faults and fail-
ures. The decision is on a case by case basis. A general
rule is that before and after performing some task a check
is made of the state of any resources used by the task. If a
resource is in a fault state or is unavailable then that task
should not continue and will safety terminate. Control
passes back to the Data Collection Manager layer and the
Data Collection agent stops. The data collection is manu-
ally restarted by support staff when the fault is corrected
or the resource becomes available.

Agent Task Coordination and Communication
The Data Collection agent and Sample Handling agent

act independently of one another, but both are reliant on
sensing plate location and X-ray exposure state to deter-
mine what action to take. There is no centralised control
of either agent but rather a centralised information re-
source for inter-agent communication. Plate state is per-
sisted in ISPyB as an attribute of a plate. Updating plate
state is an indirect signal, a perceptual cue as it were, for a
change in agent behaviour. This can be represented as a
state machine shown in Fig. 4. The Sample Handling
agent is responsible for updating location state of a plate,
and the Data Collection agent the X-ray exposure state.
The operational advantage is there is the no detrimental
impact on performance if an agent is not running or re-
started – it does not need to have a memory of past ac-
tions to know what action do next, only select an action
based on sensing the current plate state.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEBPL04

Experiment Control
WEBPL04

1057

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 4: State Machine for Plate State.

SOFTWARE IMPLEMENTATION
The core components of GDA implementation for

VMXi are shown in Fig. 5.

Figure 5: GDA for VMXi.

The main control structure of a reactive controller is a
loop that cycles at a set time period, processing Sense and
Act in that order. The Sample Handling agent and Data
Collection agents are built around this very simple struc-
ture. Agent architecture is implemented as scripts written
in Python syntax. The code is highly modular and its foot
print is very small (under 3000 lines). This clearly shows
that a seemingly complex task does not require propor-
tionately complicated code, just the correct design model.
Each agent is run on separate processing threads within
the GDA server. Channel Access to the EPICS control
layer remains unchanged.

Communication Layer
Several Java plugins have been developed to serve as a

communication bridge between GDA and any external
information resources or services it needs. A try-retry

policy is put in place at each communication point to
guard against connection failure. For critical write sec-
tions to update plate state in ISPyB the agent does not
time out and waits indefinitely until a connection is re-
established. The additional network traffic generated is
minimal, and does not impact on the performance of the
database server that is shared by other MX beamlines.

External Services
The Load Plan and Image Matching services are started

as separate processes and communication to the external
services is handled via an ActiveMQ server. The Active
MQ server and Load Plan run on the same machine as the
GDA server. The Image Matching service runs on another
machine.

GDA Client and Manual Interaction
A minimal GDA client provides a manual interface for

beamline support staff. Through the command terminal
view in the client agent processes are started and stopped
on the server. It is also a tool for running the extensive set
of unit and integration tests. Plate state (and hence the
state machine) can be set in ISPyB from the client. Future
development is to add features to show the internal state
of agents and the state machine.

 Logging and Fault Reporting
Concise logging is essential to trace the actions of the

agent and beamline state at any given moment in time,
especially in the event of a fault being detected that result
in the agent stopping what it is doing. VMXi will operate
day and night, and support staff may not be immediately
available to deal with a problem. It is essential to log what
has caused the fault and structure this information as a
formal fault report. A fault report may also give instruc-
tion on how to correct the fault and return both hardware
and software in to a good state. For example, the robot
load fails in sample handling; the error is detected by the
Sample Handling agent. As a part of the Robustness Lay-
er behaviour a fault report is issued. Within that report are
detailed the nature of the error and the manual steps to
reset the robot and the plate state in ISPyB. The Sample
Handling agent then stops after this report is issued.

Performance Testing
VMXi has entered an extensive commissioning phase

after reaching the major project milestone of a first exter-
nal user. In that time the new architecture for GDA has
shown that it meets the demands for beamline automation
and satisfies the global objective of VMXi. Plates have
been processed for hours at a time, uninterrupted in sev-
eral separate commissioning tests. Agents were started,
stopped, and re-started and carried on their task without
causing disruption to the system as a whole.

A significant amount of new hardware is being installed
on to VMXi. With this comes new functionality to inte-
grate into the software. Once hardware and software sta-
bility is reached, the focus will then shift to optimising
beamline performance and throughput. The inherent

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEBPL04

WEBPL04
1058

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

modularity of the software allows it to be re-structured so
it can be subjected to formal performance tests. This need
not be a ‘live’ test, which may not be possible if mainte-
nance work is undertaken at the beamline. A fully fledged
simulator used during the development of the software
can be utilised for this purpose to run formal tests offline.
The simulator output would produce statistical evidence
of the impact a great deal of work to improve this. Here
too the simulator can be employed to test agent robustness
to by introducing random faults to the agent at any point
while it is running, prove that does not fall over, and each
aspect of it robustness behaviour is exactly as expected.

 using the development platform used by GDA devel-
opers. There is no

beamline staff: Thomas Sorenson, Juan Sanchez-
Weatherby, James Sandy and Carina Lobley. Scientific
Software: Alun Ashton, Kevin Savage, Karl Levik, Stuart
Fisher and Graeme Winter. Controls: James O’Hea, Lee
Hudson, Alan Greer, Kris Ward and Chris Martin. GDA:
Paul Hathaway. And to all the mechanical, electronical
engineers and technicians who built VMXi.

REFERENCES
[1] GDA, http://www.opengda.org
[2] Diamond Light Source, http://www.diamond.ac.uk
[3] MX,

http://www.diamond.ac.uk/Beamlines/Mx.html
[4] P. Aller, et al., “Application of In Situ Diffraction in

High-Throughput Structure Determination Plat-
forms”, In: Owens R. (Eds) Structural Proteomics.
Methods in Molecular Biology, Vol 1261. Humana
Press, New York, NY

[5] VMXi,
http://www.diamond.ac.uk/Beamlines/Mx/VMXi.h
tml

[6] Eclipse,
https://www.eclipse.org/downloads/packages/e
clipse-ide-java-developers/lunar

[7] EPICS, http://www.aps.anl.gov/epics
[8] S. Fischer, et al., “SynchWeb: A Modern Interface

for ISPyB”, Journal of Applied Crystallography,
Volume 48, Pages 927 – 932, June 2015.

[9] S.Delagenière, et al., “ISPyB: An Information Man-
agement System for Synchrotron Macromolecular
Crys-tallography”.Bioinformatics, Volume 27, Issue
22, Pages 3186–3192, November 2011.

[10] R.R. Murphy, Introduction to AI Robotics, ISBN:
978-0262133838.

[11] S. Russell, P. Norvig, “Artificial Intelligence: A
Modern Approach Third Edition”, ISBN: 978-
1292153964.

[12] R.A. Brooks, “A Robust Layered Control System for
a Mobile Robot”, IEEE Journal of Robotics and Au-
tomation, 2, Pages 14–23, 1996.

[13] M. Basham, J. Filik, “Generic Mapping Scans at
Diamond Light Source”, NoBugs, Copenhagen,
Denmark, 17-19 October, 2016.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEBPL04

Experiment Control
WEBPL04

1059

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

