
BEAMLINE EXPERIMENTS AT ESRF WITH BLISS
M. Guijarro∗, A. Beteva, G. Berruyer, T. Coutinho, L. Claustre, S. Debionne,
M.C. Dominguez, P. Guillou, C. Guilloud, A. Homs, R. Homs, M.C. Lagier,

A. Mauro, J. Meyer, V. Michel, C. Muzelle, S. Olhsson, P. Pancino, E. Papillon,
M. Perez, S. Petitdemange, L. Pithan, F. Sever, V. Valls, H. Witsch

ESRF, The European Synchrotron, Grenoble, France

Abstract
BLISS is the new ESRF beamline experiments sequencer.

BLISS is a Python library and a set of tools to empower
scientists with the ability to write and to execute complex
data acquisition sequences. Complementary with TANGO,
the ESRF control system, and silx, the ESRF data visualiza-
tion toolkit, BLISS ensure a smooth user experience from
beamline configuration to online visualization. After a 4-
year development period, the initial deployment phase is
taking place today on half of ESRF beamlines, concomi-
tantly with the ESRF Extremely Brilliant Source upgrade
program. This document presents the BLISS project in large,
focusing on feature highlights and technical information as
well as more general software development considerations.

THE BLISS PROJECT
BLISS stands for BeamLine Instrumentation Support Soft-

ware. The BLISS project started in December, 2015 inside
the Beamline Control Unit (BCU, Software Group), and
comes within the scope of the ESRF Extremely Brilliant
Source upgrade program (ESRF-EBS) [1].

The ESRF-EBS is a global project, to put ESRF and all
partners countries at the forefront of X-ray science and in-
strumentation. A major milestone will be reached in 2020
with the end of the construction of a new, revolutionary stor-
age ring and the restart of ESRF user program. ESRF will
then become the world’s first high-energy, fourth-generation
synchrotron light source. This exciting feat will offer un-
precedented tools for the exploration of matter and for the
understanding of life at the macromolecular level.

In particular, 4 new beamlines are being built and new
instrumentation is currently under development ; the main
objective of BLISS is to provide scientists with the more
advanced experiments control and data acqusition software
in order to take advantage of the new ESRF-EBS tools and
equipments. BLISS has the ambition to fulfill the needs of
the more demanding experiments.

Project Goals
• to empower scientists with the ability to write and to

execute complex data acquisition sequences
• to offer an easy to use Command Line Interface (CLI)

and an online data visualization application
• to provide generic building blocks to implement any

kind of scan

∗ guijarro@esrf.fr

• to get the most out of the capabilities of beamline hard-
ware

• to provide frameworks to quicken integration of new
hardware

• to facilitate online data analysis
• to enable data management

BLISS SOFTWARE
BLISS is primarily a Python 3.7 library. It is furnished

with a set of tools to manage experimental setups using
configured beamline devices, to write experiments control
sequences and to execute them in an adapted environment,
and to do online data visualization.

BLISS is an open-source software, licensed under LGPL
[2]. BLISS is free to use by anyone ; however ESRF does not
officially provide support to external users without a formal
collaboration agreement.

BLISS Package
BLISS is packaged with [3]. Conda is an open source

package management system and environment management
system that runs on Windows, macOS and Linux. Although
it was initially targetting Python software, it can be used to
package any kind of software and offers:

• separated environments, different execution contexts
• OS-independent, community-packaged software (from

the libc level)
• the ability to create custom packages easily

BLISS Releases
BLISS follows a one-month release cycle. The first BLISS

stable version 1.0.0 is to be released at the beginning of
next year (January, 2020). Starting with the first stable re-
lease, BLISS version numbers will follow semantic version-
ing [4]. Basically the first number (1) represents a major
version, that can only increment in case of incompatible API
changes. The second number (0) increases when backward-
compatible changes are added. The last number (0) is a
patch-level: this is mainly to indicate bug fix releases.

Source Code Management
As of today, all BLISS code is contained within a single

git repository [5]. This simple approach helps to ensure
coherency over the code base, in particular in case of refac-
toring or modifications with non-trivial consequences on
existing parts of the project compared to a solution based
on multiple git repositories linked with sub-modules for
example.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOCPL03

MOCPL03
70

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

Figure 1: From left to right: B.Formet, M.Guijarro, P.Pan-
cino, L.Pithan, P.Guillou, S.Petitdemange, C.Guilloud.

The BLISS project development website is hosted in the
ESRF gitlab server [6]. List of issues, ongoing discussions,
link to the documentation pages and more are all publicly
available.

Contributing to BLISS
Contributions to BLISS are welcome. The project follows

the github flow [7] workflow for contributions. It is a set
of best practices that combines feature-driven development
and feature branches with issue tracking.

BLISS Development Team
Within the ESRF Beamline Control Unit (BCU), a team

of 7 engineers (Fig. 1) is more specifically dedicated to
BLISS development.

Mission The mission of the BLISS team members is to
write BLISS core features, to write documentation, to be
responsible for BLISS quality assurance, and to share the
knowledge across Beamline Control Unit members.

Development Methodology The BLISS project devel-
opment methodology is inspired by Kanban [8].

Communication In order to improve the communica-
tion between team members, a daily stand-up meeting is
organised to tell about ongoing tasks, to deliver information
about the project and to exchange about problems.

Pair-programming is encouraged whenever it is possible,
in order to produce better quality code and to ensure at least
2 team members share the knowledge on some particular
parts of the project.

Merge requests cannot be merged by the same person that
is producing the code: a systematic code review pass has
been introduced in order to produce better quality code and
to enhance communication.

se
tt

in
g
s

d
at

a
ch

an
n
el

s

configuration (Beacon)

communication

data management

sh
e
ll (b

liss C
LI)

scanning

Tangogpibtcp/udpserialmodbusRPC

hardware controllers
XiaMotors: IcePAP,

galil, PI... Keithley

Acq. Channel

Acq. Master Acq. SlaveAcq.Chain

Pilatus

Eurotherm,
Oxford

control & acquisition objects
Scannable (Axis) Counter

MCA Motor Lima (2D) Regulation

Acq. controller

Figure 2: Bliss architecture.

BLISS ARCHITECTURE
The BLISS package has a modular architecture (Fig. 2)

composed of 7 distinct families of components:
• configuration and settings (Beacon)
• communication helpers
• hardware controllers
• control and acquisition objects
• scanning
• data management
• command line interface (BLISS shell)
The Configuration entity, called Beacon (Beamline Con-

figuration) is the corner stone of BLISS, as it provides entry
points for all others BLISS components (cf. Configuration
and Beacon server).

Communication helpers provide a uniform way to ac-
cess equipments interfaced via serial line, gpib, modbus or
tcp/udp for direct communication. BLISS also fully supports
TANGO [9] devices (cf. BLISS Asynchronous I/O model).

Hardware controllers are effectively interacting with the
beamline hardware devices. For example, this is the place to
implement Python objects that would implement commands
to “talk” to a device following the protocol defined by the
manufacturer, using the communication objects provided by
the communication helpers layer, or through TANGO calls.

BLISS provides generic control & acquisition objects
(cf. Control and Acquisition objects), as an adapter layer to
integrate arbitrary hardware and to foster code reuse thanks
to the factorization of common code.

The scanning entity is responsible for executing scans,
using acquisition controllers, counters and scannable objects
from the previous layer (cf. Scanning).

Finally, the data management entity publishes and stores
scan data (cf. Data Management).

BLISS CONFIGURATION
AND BEACON SERVER

Beacon (Beamline Configuration) is a server process that
is essential to BLISS, since it provides services for many
BLISS features (see Fig. 3):

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOCPL03

Experiment Control
MOCPL03

71

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 3: Beacon services.

• static configuration database
• configuration editor web application
• settings, i.e. runtime configuration properties
• channels, to exchange data between different BLISS

objects instantiated in different processes
• publishing of data produced during scans, for online

data analysis or visualisation
• distributed lock management, to be able to lock and

release resources for a particular Beacon client
Beacon relies on Redis [10] for most of those services.

Redis is an open source, in-memory data structure store,
used as a database, cache and message broker.

Last but not least, Beacon embeds an optional TANGO [9]
database-compatible server. It allows to store TANGO con-
figuration information in Beacon YAML files, thus keeping
the configuration for a whole beamline within the same files,
with the same format, at the same location.

Static Configuration Database
The static configuration is a centralized directory struc-

ture of text files (see Fig. 4) in the YAML [11] format, which
provides a simple, yet flexible mechanism to describe de-
vices within a BLISS system.

YAML has been chosen because the standard native types
(list, dictionary, numbers, unicode strings…) can be easily
mapped to Python equivalents, it handles comments (con-
trary to JSON), and also because it is human-readable (con-
trary to XML).

ID00

EH

OH

temperature

motion.yml

sessions

tomo.py
tomo.yml

...

Figure 4: YAML tree example.

Objects are identified in the system by an unique name.
BLISS reserves the YAML key name as the entry point for an

object configuration. When loading static configuration data,
Beacon goes all over the configuration database directories,
and builds an internal representation of the objects that are
defined in YAML mapping nodes from the files. Ultimately
this structure is flattened and exposed as a Python dictionary
with key-value pairs, keys being object names and values
being the corresponding configuration information.

The following YAML lines show an example of the con-
figuration of a movable axis (motor) called rotY:

motion.yml
class: IcePAP
host: iceid311
plugin: emotion
axes:
- name: rotY

address: 3
steps_per_unit: 100
acceleration: 16.0
velocity: 2.0

The information contained in the YAML files is inter-
preted when the corresponding object is loaded. This inter-
pretation depends on the type of object, in order to create
the expected Python object. BLISS has configuration plu-
gins, which can be used to extend supported object types.
In the example above, the emotion (ESRF Motion) plugin
is used to interpret the contents of the YAML file, in order
to instantiate an Axis object.

Configuring Sessions Sessions are defined in the static
configuration database, using the session plugin. A BLISS
session represents an experimental setup associated with
experiment control sequences. Indeed, two keys have to be
defined in a session YAML file:

• the config-objects key is a list of BLISS objects
from the configuration,

• the setup-file key specifies a Python file to be ex-
ecuted after session configuration objects have been
initialized

The setup file is executed in the setup_globals names-
pace of BLISS, so all objects that are defined during setup
are exposed to this namespace for further use in user scripts.

Only one session can be active at a time, however sessions
can be nested using the include-session key.

Sessions are loaded by the BLISS shell (cf. BLISS shell),
giving access to an experimental setup and associated pro-
cedures within an integrated command line interface.

Configuration Editor BLISS YAML files can be
edited using the Beacon configuration editor (see Fig. 5).
The editor runs as a web application, hosted by the Beacon
server.

Beacon Settings
Beacon settings are configuration values stored in Redis,

attached to BLISS objects, that change over time and that
need to be persisted across executions.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOCPL03

MOCPL03
72

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

Figure 5: Beacon configuration tool.

Example of settings are motor velocity, acceleration and
limits ; default values are stored in the static configuration
YAML files, but they are superseded by settings stored in Re-
dis, that correspond to the last values set by the user. Those
are applied whenever the BLISS motor object is recreated.

Settings can also be used to persistently keep (or share)
information across executions of BLISS, or across BLISS
processes like: selected counter for plot, enabled loggers,
log level, scan saving path, file template, etc.

Channels
Beacon channels leverage the built-in publish/subscribe

features of Redis in order to provide a simple way to ex-
change data between different BLISS instances.

Contrary to Beacon settings, channels data is not persisted.
When the last client holding the data disconnects, the channel
data is cleared.

Use cases for channels are:
• to update state between processes, for example: for

Axis objects, position and state (MOVING, READY…)
are shared between listeners

• to provide caching, e.g. to skip costly parameters reload-
ing if last set values kept in a channel are the same
between calls

• to prevent unwanted hardware initialization, in case
the same BLISS object is used by multiple processes,
initialization can be skipped if it has already been done.

ASYNCHRONOUS I/O MODEL
BLISS is based on the asynchronous I/O model. Indeed,

data acquisition being mainly an I/O bound task, the choice
has been made to achieve concurrency using asynchronous
I/O coupled with an event loop and callbacks instead of
relying on an implementation via OS threads, for example.
As a result, BLISS implements cooperative multitasking,

which greatly reduces race conditions, locking issues and
general problems linked with preemptive context switching.

gevent
BLISS event loop is built on top of gevent [12], a

coroutine-based Python networking library.
gevent provides lightweight execution units (tasks) based

on gevent [13].

Green Threads
While I/O operations occur in a task, gevent yields auto-

matically to execute another task. For this reason, gevent
greenlets can be seen as “green threads”, i.e lightweight,
cooperative threads compared to heavier, pre-emptive OS
threads. However, communication primitives are blocking
by default. For example, a recv() call waits for incoming
data. BLISS communication helpers ensure I/O operations
are gevent-friendly.

Direct Communication with Hardware Communica-
tion helpers to connect to serial lines, serial line, gpib, mod-
bus or tcp/udp devices ensure all I/O operations would not
block. This is mainly useful when implementing low-level
protocols from device manufacturers.

Interfacing TANGO Devices TANGO devices offer
a higher-level alternative to communicate with hardware.
Thanks to the green mode feature of PyTango [14], TANGO
device proxies returned by the BLISS communication helper
are compliant with gevent, thus allowing seamless integra-
tion of TANGO-controlled hardware in BLISS.

CONTROL AND ACQUISITION OBJECTS
The integration of hardware devices in BLISS is a three-

step process. For any instrument or piece of equipement, first
the appropriate configuration plugin has to be determined
according to the device type. Then, the hardware controller
class has to be written, to be abl$e to communicate with the
equipment. This involves the communication helper classes
provided by BLISS, or ta TANGO device proxy. Finally,
the appropriate control objects have to be written, on top
of the hardware controller class. BLISS provides 4 mini-
frameworks in order to facilitate hardware integration.

Control Frameworks
Motor Control Motor controllers are based on five

fundamental classes (Controller, Axis, Group, Encoder
and Shutter). The generic motor controller objects, and
derivative devices, provide management of:

• typical basic parameters: velocity, acceleration, limits,
steps per unit

• state, motion hooks, encoders reading, backlash, limits,
offsets

• typical actions: homing, jog, synchronized movements
of groups of motors

• trajectories (if hardware supports it)

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOCPL03

Experiment Control
MOCPL03

73

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

A Calculation Controller is also proposed to build vir-
tual axes on top of real ones.

Lima (2D Detectors) All area detectors at ESRF are
controlled with Lima [15].

The BLISS Lima base class allows to seamlessly integrate
any compatible 2D detector. Due to the standardization
provided by Lima, there is no special method to implement
since it is based on the Lima Tango server attributes and
commands, which are generic.

Multi-Channel Analyzers BLISS has support for
Multi-Channel Analyzers, thanks to a base class that en-
capsulates the underlying low-level hardware controller.

Regulation The Regulation framework helps to inte-
grate equipments like temperature or pressure controllers
and provides Input, Output and RegulationLoop classes,
to be used on top of a low-level hardware controller.

A Software Regulation Loop class emulates a PID cor-
rection loop.

Acquisition Objects
Acquisition objects derive from 3 main classes:
• Scannable
• Counter
• AcquisitionController
Scannable objects can be identified as actuators, that are

initiating a scan. Counter objects represent a quantity that
is measured during a scan. Counters need to be associated to
an AcquisitionController. The acquisition controllers
are in charge of counter values acquisition, and to insert
counters in the acquisition chain.

Control objects can be extended with those base classes,
in order to be used within a scan.

SCANNING
BLISS embeds an innovative scanning engine, designed

to support a whole range of data acquisition procedures. The
majority of scans performed at ESRF can be written in a few
lines of Python code, thanks to well-defined concepts and a
clean API.

Acquisition Chain
BLISS introduces the concept of Acquisition Chain to

describe any kind of scan. An Acquisition chain is a tree
structure to represent devices involved in a scan and how
they are related.

Acquisition Master
Master devices encapsulate triggering controllers like mo-

tor controllers (position trigger), 2D detectors (readout trig-
ger), or even software controllers to define a sequence of
triggers for the slave devices.

Slave Acquisition Devices
Slave devices encapsulate data acquisition controllers,

and define data channels ; data is acquired following the
sequence of triggers coming from the master.

Acquisition Chain Building
Acquisition chains do not come from the configuration:

they are built in Python code for each scan instead.
Building a chain consists of associating acquisition mas-

ters and acquisition slaves, using the .add() method of the
AcquisitionChain object. A scan toolbox provides a set
of functions to easily build acquisition chains, using sensible
defaults.

An acquisition chain can have multiple top masters, and
within a branch, masters and slaves can be nested to any
level.

Scan Object
The BLISS Scan object runs the acquisiton chain.
Preparation is decoupled from start to ensure a minimal

latency when starting the scan. Indeed, during preparation
each equipment is programmed or configured for the scan.
During the preparation phase, the acquisition chain tree is
traversed in order to prepare the device nodes first, then
masters and so on until the tree root ; .prepare() is called
on each element.

By default, preparation of all equipments is done in paral-
lel.

At start, the same tree traversal procedure is applied
as with the preparation phase ; on each chain element,
.start() is called ; device nodes will begin to wait for
a trigger whereas master nodes will start to produce trigger
events. It is important to note that devices are always started
before masters, and that trigger events can be hardware or
software.

A scan can be seen as an iterative sequence ; after
.start() method is executed, the acquisition chain enters
the first iteration. It continues until the first master signals
acquisition is finished, or in case of error, or if the scan is
interrupted. Then, .stop() methods are called on each tree
element.

Timing statistics are recorded during the scan. This helps
to diagnose problems with hardware devices and to debug
new procedures.

Preset Objects
Preset objects can be added to an acquisition chain, to

execute some code before, after, or inbetween iterations.

Simple Continuous Scan Example
In the case of a continuous single-motor m0 scan acquiring

data from an i0 diode, the acquisition chain can be written
as shown in Fig. 6.

It corresponds to the following scan: m0 will move at con-
stant speed from 5 to 10 (thus, m0 will actually start before
5 and finish movement after 10), defining 10 points equally

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOCPL03

MOCPL03
74

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

Figure 6: Code example for a simple continuous scan.

distributed. For each position defining a point, i0 diode
reading will be triggered for 10 milliseconds ; the average
value is stored for the scan. In this case, no synchronization
hardware is involved, it is a software continuous scan, see
Fig. 7.

Figure 7: Software continuous scan example.

DATA MANAGEMENT
AcquisitionMaster and AcquisitionSlave objects

of the acquisition chain contain AcquisitionChannel ob-
jects. Each acquisition channel has a name, a type and a
shape (0D, 1D, 2D…). The role of acquisition channels is to
emit data while acquisition is running. Then, data is saved
to disk in a scan file, and published to the Redis instance
managed by the BLISS Beacon server, enabling online data
analysis and other processing on the data stream.

HDF5 Scan Data Files
Scan files are saved in the HDF5 [16] file format. HDF5

files allow organizing data in a tree view structure. BLISS
follows the Nexus convention [17],which defines a format
within a HDF5 file that can serve as a container for all rele-
vant data associated with a scientific instrument or beamline.

BLISS SCAN_SAVING global object helps user to tell
where to save the main HDF5 file for scans, and images
data (see Fig. 8)

Figure 8: SCAN_SAVING

.base_path corresponds to the top-level directory where
scans are stored. Then, .template completes the path. It
uses Python’s string interpolation syntax to specify how to
build the file path from key values. Keys can be freely added.
Key values can be numbers or strings, or functions. In case
of function key values, the function return value is used.

SCAN_SAVING.get() performs template string interpo-
lation and returns a dictionary, whose key root_path is the
final path to scan files.

Metadata
Scannable, Counters and Acquisition Controller objects

can hold metadata to be stored in Nexus containers along
with the scan data.

For all data items, it is possible to store additional meta-
data that is published with the data stream.

Data Streaming
As soon as the reading task of the scan is running, ac-

quisition channels publish data to the Redis database that is
managed by the Beacon server.

Scalar values are stored as plain values, whereas by default
1D arrays are serialized. A reference is stored for bigger
data, like 2D images. In Redis, data is stored for a limited
period of time (1 day by default) and for a limited amount
(1GB by default).

Any program can connect to Redis to access the data
stream on the fly to perform data analysis. Clients can listen
to the Redis process to be notified of scan progress and to
perform data analysis at the same time data is acquired. The
scan data flow is represented in Fig. 9.

Online data analysis can be implemented using the BLISS
API to connect to the redis stream and to get data while the
scan is running. The BLISS API gives access to the data
through the more efficient path. For example, in the case of
a 2D image from a Lima Tango server, the reference in Redis
is resolved on demand and the image data can be directly
returned from a Tango server memory, if it is still there, in
order to save disk I/O.

BLISS supports complicated data collection protocols
with feedback, where the analysed data can be fed into the
scanning procedure, in order to better adapt the scan to the
sample. Indeed, scans are always executed iteratively, which
gives some possibility to change parameters on the fly.

External Data Writer
As of today, data is both written to a HDF5 file and pub-

lished to the BLISS Redis database. A new development
is ongoing, to delegate data saving to an external listener
process. Decoupling acquisition from saving and archiving
brings the following benefits:

• better performance for scans, with asynchronous scan
file writing

• buffering alleviates the real time constraint on the sav-
ing in respect to acquisition, and permits intermediate
processing

• makes it easier to have both ESRF and user archiving
happening at the same time

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOCPL03

Experiment Control
MOCPL03

75

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 9: BLISS scan data flow.

USER INTERFACES
On top of the BLISS library, two user interfaces have been

developed in order to provide an entry point for users on
beamlines to get access to BLISS functionalities.

BLISS Shell
The bliss command line interface (CLI) is based on

ptpython [18] and tmux [19]. It provides a Python interpreter
enhanced with BLISS-specific features.

bliss can load BLISS sessions, via a -s command line
switch. A typing helper feature allows user to type com-
mands without taking care of parenthesis and commas in-
herent to the Python language, in order to have a better
experience in interactive use.

Flint
Flint is a Qt [20] desktop application made with the ESRF

silx toolkit [21].
Flint (Fig. 10) is started automatically when a scan starts

in the BLISS shell, and listens to Redis in order to display
incoming live scan data from the data stream.

Figure 10: Flint: visualization application.

Flint leverages the silx library to provide advanced visual-
izations like scatter plots or maps, and to perform operations
on data like peak search or statistics calculation.

Flint can also plot numpy arrays directly from the BLISS
shell. Last but not least, it has some interaction features to

define and select areas in a 2D image, or to point and click
on curves to move scan motors to specific positions.

BLISS DEPLOYMENT
In 2018, BLISS has been tested on different experimental

setups, on various ESRF beamlines. The idea was to assess
BLISS technical choices and design, while starting to collect
users feedback. During 2019, the development of the project
continued in order to integrate the hardware for the first target
beamlines. Indeed, today BLISS is in the initial deployment
phase at ESRF. In the next years (2020, 2021, 2022) all ESRF
beamlines will be fully equipped with the new software.

The migration to full BLISS-controlled experiments will
face the refactoring of a huge quantity of existing procedures
developed in the legacy control system.

In order to ensure a smooth transition to BLISS, some
tools are provided with BLISS to be able to do partial updates
and to ease with the transition:

• A generic counter to use any TANGO attribute as a
BLISS counter

• BlissAxisManager TANGO server, that makes BLISS
Axis objects available as TANGO devices

• A generic TANGO server that gives access to any
BLISS object or procedure

• A Wago TANGO server, based on the BLISS Wago
controller to benefit of new features in the old system

REFERENCES
[1] J.M. Chaize et al., “The ESRF’s Extremely Brilliant Source

- a 4th Generation Light Source”, in Proc. ICALEPCS’17,
Barcelona, Spain, Oct. 2017, pp. 2010-2015, 2018.
doi:10.18429/JACoW-ICALEPCS2017-FRAPL07.

[2] LGPL, https://en.wikipedia.org/wiki/GNU_
Lesser_General_Public_License

[3] Conda, https://docs.conda.io/en/latest/

[4] Semantic Versioning, https://semver.org/

[5] Git Repository https://git-scm.com/

[6] ESRF gitlab Server,
https://gitlab.esrf.fr/bliss/bliss

[7] github Flow,
https://guides.github.com/introduction/flow/

[8] Kanban, https://en.wikipedia.org/wiki/Kanban

[9] TANGO, http://www.tango-controls.org

[10] Redis, https://redis.io

[11] YAML, http://yaml.org

[12] gevent, http://www.gevent.org

[13] greenlet: Lightweight concurrent programming Motivation,
https://greenlet.readthedocs.io

[14] PyTango,
https://github.com/tango-controls/pytango

[15] A. Homs et al., “LIMA: A Generic Library for High Through-
put Image Acquisition”, in Proc. ICALEPS’11, Grenoble,
France, paper WEMAU011, pp. 676-679, 2011.

,

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOCPL03

MOCPL03
76

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

[16] The HDF Group, Hierarchical Data Format, version 5, 1997-
2019. http://www.hdfgroup.org/HDF5/

[17] M. Könnecke et al., “The NeXus data format”, J. Appl.
Cryst., vol. 48, pp. 301-305, 2015.
doi:10.1107/S1600576714027575

[18] ptpython — A better Python REPL, https://github.com/
jonathanslenders/ptpython

[19] tmux – terminal multiplexer, https://github.com/tmux/
tmux

[20] Qt — Widget toolkit and Application framework,
https://www.qt.io/

[21] SILX — ScIentific Library for eXperimentalists,
https://github.com/silx-kit/silx

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOCPL03

Experiment Control
MOCPL03

77

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

