
CI-CD PRACTICES WITH THE TANGO-CONTROLS FRAMEWORK IN
THE CONTEXT OF THE SQUARE KILOMETRE ARRAY (SKA)

TELESCOPE PROJECT∗

M. Di Carlo†, INAF Osservatorio Astronomico d’Abruzzo, Teramo, Italy
M. Bartolini, SKA Organisation, Macclesfield, UK

S. Williams, UK Astronomy Technology Centre, Edinburgh, UK
K. Madisa, A. J. Venter, M.J.A. de Beer, SKA South Africa, Cape Town, South Africa
J. B. Morgado, D. Bartashevich, D.F. Nunes, Instituto de Telecomunicações (GRIT)

Universidade de Aveiro, Portugal

Abstract
The Square Kilometre Array (SKA) project is an inter-

national effort to build two radio interferometers in South
Africa and Australia to form one Observatory monitored
and controlled from the global headquarters (GHQ) based
in the United Kingdom at Jodrell Bank. The project is now
approaching the end of its design phase and gearing up for
the beginning of formal construction. The period between
the end of the design phase and the start of the construc-
tion phase, has been called bridging and, one of its main
goals is to promote some CI-CD practices among the soft-
ware development teams. CI-CD is an acronym that stands
for continuous integration and continuous delivery and/or
continuous deployment. Continuous integration (CI) is the
practice to merge all developers local (working) copies into
the mainline very often (many times per day). Continuous
delivery is the approach of developing software in short
cycle ensuring that it can be released anytime and continu-
ous deployment is the approach of delivering the software
frequently and automatically. The present paper wants to
analyse the decision taken by the system team (a specialized
agile team devoted to developing and maintaining the tools
that allows continuous practises) in order to promote the
CI-CD practices with TANGO controls framework.

INTRODUCTION
When creating releases for the end-users, every big soft-

ware industry faces the problem of integrating the different
parts of the software and bring them to the production en-
vironment, that is where users work. The problem arises
when many parts of the project are developed independently
for a period of time and when merging them into the same
branch, the process takes more than what was planned. In
a classical waterfall software development process this is
usual, but the same happens also following the classical git
flow, also known as feature-based branching, that is when
a branch is created for a particular feature. Considering,
for example, one hundred developers working in the same
repository each of them creating one or two branches, then
∗ Work supported by Italian Government (MEF - Ministero dell’Economia

e delle Finanze, MIUR - Ministero dell’Istruzione, dell’Università e della
Ricerca)

† matteo.dicarlo@inaf.it

it is easy to understand what is called the “merge hell” that
is when every merge has to deal with conflict parts and it is
impossible, for a single developer, to solve all the conflicts
thus creating delay in publishing any release. This problem
was analyses at the Square Kilometre Array (SKA) project,
an international effort to build two radio interferometers in
South Africa and Australia to form one Observatory mon-
itored and controlled from the global headquarters (GHQ)
based in the United Kingdom at Jodrell Bank. The selected
development process is Agile (Scaled Agile framework) that
is basically incremental and iterative with a specialized team
(known as system team) devoted to support the continuous
Integration, test automation and continuous Deployment.

TANGO-CONTROLS OVERVIEW
One of the most important decisions taken by the SKA

project is the adoption of the TANGO-controls framework
[1] which is a middleware for connecting software processes
together mainly based on the CORBA standard (Common
Object Request Broker Architecture). The standard defines
how to exposes the procedures of an object within a soft-
ware process with the RPC protocol (Remote Procedure
Call). The TANGO framework extends the definition of
object with the concept of Device which represents a real
or virtual device to control that expose commands (that
are procedures), attributes (like the state) and allows both
synchronous and asynchronous communication with events
generated from the attributes (for instance a change in the
value can generate an event). Figure 1 shows a module view
of the framework.

CONTINUOUS INTEGRATION (CI)
CI refers to a set of development practices that requires

developers to integrate code into a shared repository several
times a day. Each check-in is then verified by an automated
build, allowing teams to detect problems early. According
to Martin Fowler [2], there are a number of best practices to
implement to reach CI:

• Maintain a single source repository (for each compo-
nent of the system) and try to minimize the use of
branching, in favor of a single branch of the project
currently under development.

,

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOCPR05

Systems Engineering, Collaborations, Project Management
MOCPR05

115

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 1: TANGO-Controls simplified data model.

• Automate the build (possibly build all in one com-
mand).

• Together with the build, it must run also tests so to
make the software self-testing (testing is crucial in CI
because all the benefits of it come only if the test suite
is good enough).

• Every commit should build on an integration machine:
the more the developers commit the better it is (com-
mon practice is at least once per day). In fact, this
reduces the number of potential conflicts and once a
conflict is found, since the change is small, the fix is
easier (as a consequence if a build fails then it must be
fixed immediately).

• Keep the build fast so that a problem in integration can
be found quickly.

• Multi-stage deployment: every build software must be
tested in different environments (testing, staging and
so on).

• Make it easy for anyone to get the latest executable ver-
sion: all programmers should start the day by updating
the project from the repository.

• Everyone can see what’s happening: a testing environ-
ment with the latest software should be running.

CONTINUOUS DELIVERY AND
CONTINUOUS DEPLOYMENT (CD)

Continuous delivery [3] refers to an extension of the CI
that correspond to automating the delivery of new releases of
software in a sustainable way. The release frequency can be
decided according to the business requirement but the great-
est benefit is reached by releasing as quickly as possible. The
deployment has to be predictable and sustainable, no matter
if it is a large-scale distributed system, a complex production
environment, an embedded system, or an app. Therefore
the code must be in a deployable state. Testing is one of
the most important activities and it needs to cover enough
of your codebase. While it is often assumed that frequent
deployment means lower levels of stability and reliability in
the systems, this is not the reality and, in general, in software
the golden rule is “if it hurts, do it more often, and bring the
pain forward” ([3], page 26). There are many patterns for

deployment such as the blue-green deployment (Fig. 2, ([3],
page 261)) and, in general, all of them are related somehow
to the DevOps culture. According to [4], "DevOps is the
outcome of applying the most trusted principles from the
domain of physical manufacturing and leadership to the IT
value stream. [...] The result is world-class quality, reliabil-
ity, stability, and security at ever lower cost and effort; and
accelerated flow and reliability throughout the technology
value stream, including Product Management, Development,
QA, IT Operations, and Infosec". Practically it is an in-
creased collaboration between development (intended as
requirement analysis, development and testing) and opera-
tions (intended as deployment, operations and maintenance).
In fact, it is very common, when those two areas are managed
by different teams, that the development team loses interest
in the operations aspects, when the software is managed
by a different team. Having a shared responsibility means
that development teams share the problems of operations
by working together in automating deployment operations
and maintenance. It is also very important that teams are
autonomous: they should be empowered to deploy a change
to operations with no fear of failures. Moreover, automa-
tion is one of the key elements in implementing a DevOps
strategy, as it allows the teams to focus on what is valuable
(code development, test result, etc. and not the deployment
itself) and it reduces human errors. The importance of those

Figure 2: Blue-Green deployment: If the active environ-
ment in production is the blue box, it deploys on the green
and if everything goes well the router can switch the incom-
ing requests; if an error is discovered is always possible to
rollback.

practices can be summarized in reducing risks of integration
issues, of releasing new software and overall in having a
better software product. Continuous deployment goes one
step further as every single commit (!) to the software that
passes all the stages of the build and test pipeline is deployed
into the production environment.

CONTAINERIZATION
The system engineering development process has been

adopted in the initial design phase of the SKA project in
order to reduce the complexity by dividing the project into
simpler and easier to resolve elements. For every element
of the system, an initial architecture has been developed,
which comprises the software modules needed which re-
quires a repository (each of them is a component of the
system). Since all components need to get deployed and

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOCPR05

MOCPR05
116

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Systems Engineering, Collaborations, Project Management

tested together, the first decision taken is on how they need
to be packaged. A container is a standard unit of software
that packages up code and all its dependencies so the com-
ponent runs quickly and reliably across different computing
environments. A Docker container image is a lightweight,
standalone, executable package of software that includes
everything needed to run an application: code (or more in
general binary), runtime, system tools, system libraries and
settings. In order to allow all the teams to work in the same
environment, it has been created a containerized Tango en-
vironment [5] is summarized in Fig. 3. Every tango project

Figure 3: SKA-docker project module view.

comes with a docker-composed based orchestration (docker-
compose.yml file) that includes:

• MariaDB service container,
• DatabaseDs service container,
• For each device server in the project, one container

defined by the developer.
Each container includes one application (in TANGO terms
one device server) and testing is also made within a container
(created on the fly) with a standardized (for SKA) metrics file
output that states for each project/component the following
information:

• Build status: true or false,
• Test report,
• Coverage,
• Linting information.

For the integration of all the docker images (coming from
the different repositories), the integration environment is
based on Kubernetes (k8s) orchestration [6] and Helm [7].
Helm is a tool for managing Kubernetes charts where a chart
is a package of pre-configured Kubernetes resources that
are a set of information necessary to create an instance of a
Kubernetes application. In specific every chart contains at
least information concerning the version of the docker image
and the pull policy for the orchestration. In specific every
component has a helm chart that contains information con-
cerning the version of the docker image and the pull policy
for the orchestration. It also contains the needed information
to initialize correctly the TANGO database (configuration
of devices). Figure 4 summarize the module view of the
structure of the repository for the integration of the SKA
components.

Figure 4: K8s Integration repository module view.

INFRASTRUCTURE
The infrastructure described in this section is possible

thanks to the use of a Makefile in each project that allows
to simplify the work on containerization and, overall, the
automation of the code building, testing and packaging pro-
cesses. In fact, with one single command, it is possible to
compile the project, generate the docker image and test it
by dynamically creating a container for that purpose. The
Makefile also allows to push the docker image to the SKA
repository.

Runtime View
Figure 5 describes the runtime view of the CICD infras-

tructure in place for the SKA project. The starting point is
the source-code repository server where every team put their
code (for instance it can be Github). The CICD Server re-
quests the code from the source code repository periodically
and keeps information about the execution of the pipeline
(see next section). The CI executor takes the pipeline con-
figuration information and executes it pushing artifacts to
the Artifacts repository. If tests are successful the executors
starts the deployment of the software artifacts to various en-
vironments (like integration, stage and so on) using ansible
scripts [8].

Data Entity
The selected tool for CICD is Gitlab where the CI executor

is called “runner” and the CICD server is a code repository
that includes a description (in a yaml file) of the execution
that has to be done by the runners. Gitlab includes also an ar-
tifacts repository called “pages” for each repository. Figure 6
summarize the data model of the SKA CI-CD infrastructure
in a UML diagram.

The entry point of the diagram is the Pipeline that is
composed by many jobs. This has been standardised for
each project in:

• Build, where code is compiled and a docker image is
created;

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOCPR05

Systems Engineering, Collaborations, Project Management
MOCPR05

117

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 5: Runtime view of the SKA CI-CD infrastructure.

Figure 6: Data Model of the SKA CI-CD infrastructure.

• Linting, where code is analysed against a set (or multi-
ple sets) of coding rules in order to check if it follows
the best practices decided;

• Test, where the compiled package (and docker image)
are tested; tests are grouped into Fast / Medium / Slow
/ Very Slow categories.

• Publish, where the coding artifacts are published;
• Pages, where test results and logs are published (the

name comes directly by the Gitlab technology).
In the Gitlab cloud space the artifacts stored are the logs

of each job executed and the test results obtained by the
Test job. Other artifacts (python packages, docker images
and so on) are stored in a different repository based on the
Nexus tool. For each git revision there is a version of the
pipeline configuration (stored in the repository with the name
“.gitlab-ci.yml”).

DEVELOPMENT WORKFLOW
There are two possible workflow in order to make a change

to a git repository whether there is branch or not. In general,
two concepts are important to the SKA way of using GIT:

• The master branch of a repository shall always be stable.
• Branches shall be short lived, merging into master as

often as possible.
Stable means that the master branch shall always com-

pile and build correctly, and executing automated tests with

success. Every time a master branch results in a condition
of instability, reverting to a condition of stability shall have
precedence over any other activity on the repository.

Every commit triggers a pipeline build and there may
be different rules applied to determine which stages are
executed in the pipeline based on factors like the branch
name. According to the data model, every pipeline job is
associated with its git commit (including tag commits) and
developers have to ensure that the stages complete as fast
as possible. For this reason it is possible to parallelize jobs,
for example unit tests and static analysis could be run in
parallel. Developers needs to keep all tests working on the
“master” branch that must be kept stable. When working
on a development project, it is important to stick to these
simple commit rules:

• Commit often.
• Git logs shall be human readable in sequence, describ-

ing the development activity.
• Use imperative forms in the commit message.

Workflow for Master Based Development
• A developer takes a copy of the current code base on

which to work
• Work is started on a local copy
• As the developer advances in the implementation com-

mits are done on the local git repo.
• Unit tests are written and run in the development envi-

ronment until successfully executed
• Once the tests pass the developer pushes the changes

into a remote repository
• The CI server

– Checks out changes every X minutes (or when
they occur)

– Runs static code analysis and provide feedback to
the developers

– Builds the system
– Runs all tests
– Releases deployable artefacts for testing (reports,

code analysis, etc.)
– Assigns a build label to the version of the code it

just built (i.e. docker image version)
– Alerts the team if the build or tests fail which fixes

the issue asap
– Provide feedback about coverage metrics

Workflow for Story Based Branching
• A developer takes a copy of the current code base on

which to work
• Work is started on a new branch based on the story

being implemented
• As the developer advances in the implementation com-

mits are done on the local git repo.
• Unit tests are written and run in the development envi-

ronment until successfully executed
• Once the tests pass the developer pushes the changes

into a remote branch
• The CI server

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOCPR05

MOCPR05
118

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Systems Engineering, Collaborations, Project Management

– Checks out changes when they occur
– Runs static code analysis and provide feedback to

the developer
– builds the system and runs unit and integration

tests on the branch
– Provide feedback to the developer about test fail

or success
– Provide feedback about coverage metrics

• Once all tests execute successfully on the branch, the
developer makes a pull request for merging the changes
into master.

• As part of the pull request the code is reviewed by other
developers.

• Code is merged into master branch
• The CI server

– Runs all tests on the master branch
– Releases deployable artefacts for testing (reports,

code analysis, etc.)
– Assigns a build label to the version of the code it

just built (i.e. docker image version)
– Alerts the team if the build or tests fail which fixes

the issue asap

DASHBOARD
From a management point of view it is very important

to monitor the projects in SKA with at least the following
information:

• Latest build status and date
• Latest green build date
• Test coverage
• Testing report
In order to do that, a dashboard has been created as a

progressive web app (PWA). this kind of web application
are loaded like regular web pages or websites but can offer
user functionalities such as working offline, push notifica-
tions, and device hardware access traditionally available
only to native applications. In specific, PWAs combine the
flexibility of the web with the experience of a native applica-
tion. In particular progressive means that it works for every
user, regardless of browser choice because they’re built with
progressive enhancement as a core tenet. Other important
qualities are:

• Responsive, it works for desktop, mobile, tablet;.
• Connectivity independent: it allows work offline
• App-like: feel like an app to the user with app-style

interactions and navigation;
• Fresh: always up-to-date thanks to the service worker

update process
• Safe: HTTPS

The deployment are based on a pipeline with two main
jobs:

• Retrieve data, from Gitlab rest api download a set of
json files (one per each page)

• Publish data, that generate the web page.

CONCLUSION
All the decisions taken by the system team try to follow

the continuous integration suggestion from Martin Fowler’s
paper. In particular:

• For each component of the system, there is only one
repository with minimal use of branching that are short
lived;

• The build of each component is automated together
with tests that allows to push only the correct artifacts
into the artifact repository;

• Every commit triggers a build in a different machine
(not the local developer machine);

• Once the artifacts are built, they are transferred in an
integration repository which run a kubernetes cluster
and more tests are done;

• Having a common repository for the code artifacts and
for the test results artifacts make it very easy to down-
load the latest changes from every team and for each
component;

• The integration environment is accessible for every
developer.

There is some work still to be done, the first and most
important is improving the performance of the tests. At
the moment, tests are executed after the code is compiled
and the docker images are built. A possible improvement
is building the docker images after the tests are executed.
Besides, more environments have to be created. For this
purpose a kubernetes cluster is going to be used so that it
will be possible to isolate each environment adding for each
of them the specific resources needed in terms of GPUs or
other resources. Having kubernetes will also make very easy
to implement the blue-green deployment pattern.

ACKNOWLEDGEMENTS
This work has been made possible thanks to the finan-

cial support by the Italian Government (MEF - Minis-
tero dell’Economia e delle Finanze, MIUR - Ministero
dell’Istruzione, dell’Università e della Ricerca). This re-
search is also supported by the project Enabling Green E-
science for the SKA Research Infrastructure (ENGAGE
SKA), reference POCI-01-0145-FEDER-022217, funded
by COMPETE 2020 and FCT, Portugal.

REFERENCES
[1] TANGO-controls, https://www.tango-controls.org/

[2] Martin Fowler, Continuous Integration,
https://martinfowler.com/articles/
continuousIntegration.html

[3] J. Humble and D. Farley, Continuous Delivery: Reliable
Software Releases Through Build, Test, and Deployment Au-
tomation, 2010, ISBN (0321601912, 9780321601919), Pub.
Addison-Wesley Professional.

[4] G. Kim, P. Debois, J. Willis, and J. Humble, The DevOps
Handbook: How to Create World-Class Agility, Reliability,
and Security in Technology Organizations, ISBN (1942788002
9781942788003).

.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOCPR05

Systems Engineering, Collaborations, Project Management
MOCPR05

119

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

[5] SKA-docker repository,
https://gitlab.com/ska-telescope/ska-docker

[6] kubernetes, https://kubernetes.io

[7] Helm, https://helm.sh

[8] Ansible, https://www.ansible.com/

.

.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOCPR05

MOCPR05
120

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Systems Engineering, Collaborations, Project Management

