
AUTOMATIC DEPLOYMENT IN A CONTROL SYSTEM ENVIRONMENT∗

M. Konrad†, S. Beher, A. Lathrop, D. Maxwell, J. Ryan
Facility for Rare Isotope Beams, Michigan State University, East Lansing, USA

Abstract
Development of many software projects at the Facility of

Rare Isotope Beams (FRIB) follows an agile development
approach. An important part of this practice is to make new
software versions available to users frequently to meet their
changing needs during commissioning and to get feedback
from them in a timely manner. However, building, testing,
packaging, and deploying software manually can be a time-
consuming and error-prone process. We will present pro-
cesses and tools used at FRIB to standardize and automate
the required steps. We will also describe our experience up-
grading control system computers to a new operating system
version as well as to a new EPICS release.

INTRODUCTION
FRIB [1] is a project under cooperative agreement be-

tween the US Department of Energy and Michigan State
University (MSU). It is under construction on the campus
of MSU and will be a new national user facility for nuclear
physics. Its driver accelerator is designed to accelerate all
stable ions to energies >200 MeV/u with beam power on
the target up to 400 kW [2]. Commissioning of the second
linac segment is currently underway and the accelerator is
planned to support routine user operations in 2022 [3].

FRIB’s controls group strives to support commissioning
and operation by rolling out bug fixes and new features as
fast as possible. To make this happen controls engineers are
following principles of agile software development which
include iterative, incremental and evolutionary development
and a short feedback and adaption cycle. Unfortunately, this
approach can be slowed down significantly by the fact that
building and deploying control-system software can be a
complex and error-prone process that often requires consid-
erable manual work by experts. In the following we will
describe how we speed up the build and deployment pro-
cess for FRIB’s controls software by following continuous
integration (CI) and continuous delivery (CD) principles.

CONTROL SYSTEM ENVIRONMENT
The vast majority of computers on FRIB’s control-system

network are based on the x86-64 architecture. This includes
workstations, servers, as well as industrial computers in
cPCI and MicroTCA form factor. FRIB has standardized on
Debian GNU/Linux as operating system for control-system
computers. Even hard real-time applications are running
on Debian GNU/Linux with a real-time kernel rather than
on special real-time operating systems like VxWorks or
∗ Work supported by the U.S. Department of Energy Office of Science
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RTEMS. This heavily standardized environment helps to
keep the test matrix small, simplifies the CI infrastructure
and allows sophisticated tools developed in the IT indus-
try to be leveraged for software deployment, configuration
management as well as for monitoring.

FRIB’s controls network is independent from its office
network. For security reasons the two networks use separate
hardware and a firewall allows only predefined connections
between them. In addition to the production control sys-
tem used to operate the accelerator, FRIB’s controls group
operates a development control system on a separate net-
work to support development and testing. The development
network mimics the architecture of the production network.
In particular both networks share the same network topol-
ogy, run the same IT infrastructure services (DHCP, DNS,
storage servers, hypervisors,...) as well as the same control-
system services (Alarm Server, Archiver Appliance, Channel
Finder,...). A limited number of “control-room” worksta-
tions as well as control-system devices like programmable-
logic controllers, motor controllers, LLRF controllers etc.
are available to support development and testing. In some
cases simulation applications are mimicking the behavior of
hundreds of devices based on a simplified model [4]. Vir-
tualization is used extensively on both networks to increase
availability and flexibility as well as to reduce hardware and
maintenance cost. The similarity between both networks
allows many bugs to be discovered on the development net-
work before software is deployed to the production network.

CONTINUOUS INTEGRATION
All source code required to build software for FRIB’s

control system is stored on a central Git [5] repository server
on the office network. The revision-control workflow largely
follows the Gitflow [6] approach which requires develop-
ers to implement new features and bug fixes on feature
branches allowing them to work on their feature without
the risk of breaking other developer’s build. Each repository
contains branches for “unstable” and “release” targets. Com-
pleted feature branches are merged into an “unstable” branch.
Tested software is released by merging from an “unstable”
branch into a “release” branch. For both branches software
is automatically built, tested and packaged on a Jenkins CI
cluster [7]. The resulting Debian packages are pushed into
separate Aptly [8] repositories for the development and pro-
duction environments. See [9] for an in-depth description
of FRIB’s CI approach.

AUTOMATIC DEPLOYMENT
The Debian package repository as well as the Git reposi-

tories are mirrored into the corresponding controls network
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Figure 1: FRIB’s development and production controls net-
works are separate from the office network. Configuration
data and software package are mirrored to these networks.

allowing them to operate independently from the office net-
work (see Fig. 1). This ensures control-system machines
can be reinstalled even if services on the office network are
down.

FRIB relies on the open source versions of Puppet [10]
and Ansible [11] for managing the configuration of control-
system computers (nodes). Both tools use a declarative
language to describe the desired state of the target nodes in
form of manifests (Puppet) and playbooks (Ansible). When
the tools are run, they inspect the current state of the tar-
get node and perform the actions required to reach the de-
sired state specified in the manifest/playbook. In contrast
to a simple shell script that for example installs a software
package, customizes its configuration files and starts the
corresponding service, a well designed Puppet manifest or
Ansible playbook is idempotent – applying it multiple times
doesn’t install the software again, a required line is added to
a configuration file only once and services aren’t restarted
unnecessarily. In addition to avoiding potentially expensive
operations this prevents possible side effects like unneeded
restarts of services. This property of the tools allows them
to run periodically, deploying updates automatically as they
become available in Git and the Debian repository while at
the same time correcting undesired configuration drift.

Puppet requires an agent running on each target node
which pulls the desired configuration from a central master
server. Ansible on the other hand pushes configuration from
a central server to the target nodes through SSH. It thus can
manage nodes on which an agent cannot be installed.

Both Ansible and Puppet allow code to be bundled up in
modules. Modules for common IT administration tasks like
managing web servers, database management systems etc.
are available as open-source software. FRIB has selected
Puppet as the primary configuration management tool for
its control system due to the availability of a wide range

of Puppet modules that are often offering more flexibility
than the modules available for other tools. Other reasons for
choosing Puppet were its powerful language, its (compared
to Ansible) high performance, its built-in logging capabili-
ties and the fact that Puppet is also used for managing Linux
nodes on FRIB’s office network allowing for code and ex-
pertise to be shared. In the following FRIB’s deployment
strategy and as well as the tools used will be described for
EPICS IOCs and Channel Access gateways. The deployment
of other key control system components like archivers and
other middle-layer services has been automated as well but
is not described in this publication.

EPICS IOCs
The about 300 EPICS IOCs are among the most critical

components of FRIB’s control system. It is important to
ensure they are all running the desired software and config-
uration while at the same time keeping IOC downtime at
a minimum. At FRIB support libraries are built on the CI
cluster and get installed as Debian packages whereas IOCs
are built from source code on the target machines. This
approach has the following advantages:

• Projects containing handcrafted C/C++ code are built in
a predictable way on the CI cluster. Compilation errors
and failing tests are discovered during development.

• Uninstalling a Debian package removes all contained
files. This allows libraries and header files to be re-
moved from system folders cleanly.

• Dependencies between packages ensure that required
libraries and tools are installed and compatible.

• Bugs in an IOC’s database files can be fixed in the field
quickly.

• IOC database development is sped up for devices which
are not available on the development network as well as
for systems that interact with a large number of devices.

Note that although FRIB’s deployment strategy allows
database files to be modified in the field, the majority of
changes are tested on the development network before they
are deployed to the production network. However, the ability
to apply a hot-fix in the field can help to reduce accelerator
downtime.

A disadvantage of building IOCs on the target nodes is
that this causes the deployment to be more complex than
installing a package. FRIB has developed the EPICS Soft
IOC Puppet module [12] to simplify the required steps of
managing IOCs. It provides defaults that make it easy for
IOC engineers to follow best practices and facility conven-
tions. At the same time the module allows IOC engineers to
deviate from the default if necessary. The following Puppet
manifest provides an example for managing an EPICS IOC
process with this module:

$iocbase = ’/usr/local/lib/iocapps’

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPL006

Control System Infrastructure
MOMPL006

127

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



class { ’epics_softioc’:
iocbase => $iocbase,

}

package { ’epics-asyn-dev’:
ensure => latest,

}

vcsrepo { "${iocbase}/myioc":
ensure => ’latest’,
provider => ’git’,
source => ’https://git-server/repo.git’,
owner => ’softioc’,
group => ’softioc’,

}

epics_softioc::ioc { ’myioc’:
ensure => running,
enable => true,
bootdir => ’iocBoot/ioclinux-x86_64’,
log_server => ’log.example.com’,
subscribe => [

Package[’epics-asyn-dev’],
Vcsrepo["${iocbase}/myioc"],

],
}

When instantiating the epics_softioc class, it has to be
pointed to a directory containing the source code of the IOCs
running on this node. The class will automatically ensure
that libraries and tools required to build and run IOCs are
installed. In particular this will install packages providing
EPICS Base, procServ [13], the system’s native compiler as
well as Make. IOC-specific libraries and tools like the Asyn
support library can be installed with a package resource.

Rather than defining the iocbase variable in each node’s
manifest, it is recommended to define it facility-wide or to
look up the directory in Hiera [14] so that engineers can find
the IOC directories in the same location on all nodes. The
epics_softioc class needs to be instantiated once on each
node that should run EPICS IOCs. If the roles and profiles
design pattern [15] is followed, this would typically be done
in a Puppet profile that gets included for each node running
IOCs.

The remaining lines in the manifest are describing an IOC
instance. They can be repeated if multiple IOC instances
are supposed to run on a node. In the example given the
vcsrepo Puppet module [16] is used to clone a Git repos-
itory containing the IOC code into the IOC base directory.
Other methods for providing the source code like copying
the files using Puppet are supported as well. By default
the epics_softioc::ioc defined type automatically com-
piles the IOC code contained in the sub-directory matching
the defined type’s name. If ensure => running is speci-
fied, the IOC will be started automatically using the node’s
init system. In the above example the service will also be en-

abled which causes it to be started automatically on system
boot. epics_softioc::ioc automatically configures IOC
services to be started after the network has been brought up.
On nodes using systemd it can also ensure that other services
are running and that certain network drives are mounted be-
fore the IOC service is started (e. g. for autosave).

IOCs automatically get started under procServ running
an IOC shell script (by default st.cmd) in the specified
IOC boot directory. By default procServ is configured to
restart crashed IOC processes after writing a core file to
support debugging. Local users can connect to the shell
of a running IOC through telnet or a Unix domain socket.
epics_softioc::ioc automatically configures logging
of all activities on the IOC shell including automatic ro-
tation and compression of old log files. The log_server
argument causes log messages from the IOC process to
be send to the specified log server. If multiple IOC pro-
cesses should be managed on a node, the vcsrepo and
epics_softioc::ioc resources can be repeated for each
IOC. By default the EPICS Soft IOC Puppet module runs
IOCs with limited privileges. The required users and groups
are created automatically and directory permissions are set
appropriately.

Subscribing the epics_softioc::ioc resource to the
package and vcsrepo resources automatically triggers a
rebuild and a successive restart of the IOC when a new
version of the source code is checked out or when a support
library is updated. This allows IOCs to be updated in a fully
automatic way. If automatic recompilation or automatic IOC
restarts aren’t desired these features can be disabled.

Defaults provided by the Puppet module can be overridden
facility-wide to make it easy for engineers to follow their
conventions.

Channel Access Gateway
For security reasons the FRIB controls network is split

into multiple sub-networks. Channel Access connections
between these networks are only possible through Channel
Access gateways [17]. The epics_gateway Puppet mod-
ule [18] has been developed to simplify management of these
gateways. Its architecture has some similarities with the
EPICS Soft IOC module. Two classes need to be instantiated
to bring up a gateway: epics_gateway ensures the pack-
ages providing the gateway, procServ and the required tools
are installed whereas epics_gateway::gateway config-
ures and starts instances of the gateway. Multiple gateway
instances on the same node are possible to support bidirec-
tional gateways or setups where more than two networks are
supposed to be connected through gateways running on the
same node. The configuration files of the gateway defining
the permissions for access through the gateway are provided
as a directory for each gateway instance. Again these direc-
tories can be checked out from a revision control system
using the vcsrepo Puppet module. The Puppet module au-
tomatically restarts a gateway instance when a new version
of its configuration becomes available to ensure the changes
become active.
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Firmware Deployment to Embedded Devices
FRIB operates about 350 RF amplifiers that consist of

various sub-components each running their own firmware.
In total more than 4 000 firmware images need to be managed
for these amplifiers. The main controller embedded in each
amplifier rack runs Linux on an ARM-based single-board
computer. Firmware updates are performed by copying the
image to the controller using the Secure Copy Protocol (SCP)
and running a command over Secure Shell (SSH) to program
the image. Puppet agent is not available on these devices.
However, the controllers come with a Python interpreter
allowing the firmware update process to be managed using
Ansible.

FRIB has developed an Ansible playbook which compares
the current firmware versions read out by the IOC with the
firmware version available in Git. If an update needs to
be performed the playbook copies the relevant firmware
images to the controller, executes the corresponding update
commands and reboots the controller.

Ansible is also used to manage SSH keys for accessing
the controllers and to disable password-based remote logins
with the weak default password set by the vendor. This
improves IT security by replacing shared passwords by keys
that can be removed individually to revoke access for a user.

DEPLOYMENT PROCESS AND
EXPERIENCE

Changes are deployed continuously to nodes on the devel-
opment network. When an engineer merges a new feature
to an “unstable” branch it will be built and deployed auto-
matically within a few minutes. This enables engineers to
test their code frequently. Releasing to production means
merging from an unstable branch to a release branch; again
deployment is performed automatically. Branch permis-
sions on the Git repositories prevent direct pushes to release
branches and enforce pull requests to be reviewed by another
engineer who is familiar with the operations schedule. This
effectively prevents deployment at inopportune times.

Commissioning vs. Operation
During the commissioning phase of an accelerator

changes typically get deployed in small increments in a
“rolling release” pattern. During operations, on the other
hand, engineers might need to wait for a maintenance shut-
down before they can deploy new features. In the meantime,
which at FRIB can be as long as half a year, a large number
of changes to various systems might pile up. Some of them
might require multiple components to be upgraded at the
same time – e. g. a piece of software and the corresponding
Puppet code managing its configuration. In some cases soft-
ware on multiple nodes might need to be updated to ensure
compatibility. Interactions between a large number of such
changes can be difficult to understand, resulting in higher
risk. At FRIB this risk is minimized by integration testing
the to-be-released software on the development network.

This requires a feature freeze in preparation for a mainte-
nance shutdown. FRIB maintains multiple collections of
software to support this approach. Collections targeted at the
development network are called uc1, uc2, uc3,... (“unstable
software collections”) while software collections targeted
at the production environment are named fc1, fc2, fc3,...
(“FRIB software collections”). For example while an older
collection (fc1) might be in use on the production network,
a new release (uc2) might be under test on the development
network in preparation for deployment during an upcom-
ing shutdown. At the same time some developers might
already have started working on features that are intended
for the next software collection half a year later (uc3). Once
a package has been tested on the development network it
can be released to the corresponding FRIB software collec-
tion by merging into the corresponding release branch. New
software collections are planned to be released during each
maintenance shutdown.

Management of Puppet Code
The sum of all Puppet configuration files (manifests, tem-

plates, modules, Hiera data etc.) for all nodes on the network
is called an environment. Puppet supports multiple environ-
ments allowing changes to be implemented in a separate
environment before integrating them into the production
environment. Each node can be pointed to one of these
environments. A new environment can thus be tested on
a small number of machines before applying the changes
to all nodes. Environments provide a way of rolling out
changes that affect multiple machines in a coordinated way.
FRIB leverages r10k [19] to check out the required modules
from a revision-control system to combine them with the
manifests for each environment. This allows modules to be
developed and revision controlled separately from the rest of
the environment. By translating Git branches into environ-
ments r10k makes it easy to create and destroy short-lived
environments for testing.

Staged Upgrades
At FRIB major changes affecting many machines like up-

grading to a new major EPICS release or operating system
version are typically performed machine by machine or in
small batches to keep the risk low and to simplify schedul-
ing these upgrades. An operating system upgrade generally
requires transitioning to a new software collection which
has been build for the new operating system and the libraries
it ships with (e.g. from fc1 to fc2). This means a slightly
different system configuration is required (e. g. pointing to
the fc2 package repository rather than to the fc1 reposi-
tory). A new Puppet environment can be created based on
the existing environment to test these changes before they
are merged into the production environment. Although not
strictly necessary, at FRIB nodes are usually reinstalled from
scratch in the context of an operating system upgrade. This
step ensures that the Puppet configuration is still working
correctly with the new operating-system version and guar-
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antees that the node can be reinstalled in case of a hardware
failure.

The described approach of upgrading node-by-node al-
lows a mix of multiple operating systems or EPICS ver-
sions to be used in parallel on the control-system net-
work. Systems benefiting from the latest operating sys-
tem/compilers/libraries can thus be upgraded early while the
upgrade of other systems is still in preparation. In general
we strive to complete these kind of upgrades within a few
weeks to avoid the effort of maintaining multiple software
collections for a longer time.

Experience
At FRIB it turned out to be difficult to clearly separate

management of the controls applications from management
of the underlying infrastructure – in particular when custom
kernel drivers needed to be loaded, permissions needed to
be granted to allow access to hardware or when real-time
constraints needed to be met. As a consequence FRIB has
decided to follow a DevOps strategy with control-system
engineers and IT administrators working as part of the same
team. In practice this means that IT administrators and
controls engineers both have administrative privileges on
nodes running IOCs and that the Puppet code for IOC nodes
is maintained collaboratively while manifests dealing with
IT infrastructure like authentication etc. are only accessible
by IT administrators.

A valuable side effect of automating the deployment of
control-system nodes with a configuration management tool
is that their manifests/playbooks document all steps in a stan-
dardized way which enables engineers unfamiliar with the
details of a system to understand its deployment if necessary.
At FRIB we found that this transparency encourages team
work. Additionally, the ability to execute this “documenta-
tion” allows its completeness and correctness to be verified
(e. g. by wiping out nodes at a favorable time and rebuilding
them from scratch). In a control-system environment where
availability is important this can help to keep the mean time
to repair low. At FRIB the typical time for running Puppet
to rebuild a node from scratch is ≈10 min.

The described Puppet modules can be used in enterprise
environments with a Puppet master as well as for deploying
services to stand-alone virtual machines on desktop comput-
ers (e. g. using Vagrant [20]).

CONCLUSION
FRIB has successfully implemented an infrastructure for

CI and automatic deployment based on industry-proven open-
source tools like Jenkins, Puppet and Ansible. The strategies
and mechanisms in place have boosted deployment speed
significantly and thus enabled agile development. The devel-
oped Puppet modules simplify deployment of key control-
system components like EPICS IOCs, archivers and gate-
ways by increasing abstraction while at the same time pre-
serving flexibility. By providing good defaults they make it
easy for engineers to follow best practices and facility stan-

dards. Firmware upgrades of embedded devices have been
automated successfully on a large scale using Ansible.

The described approach and tools have been applied suc-
cessfully over several years at FRIB. The built-in flexibility
allows to support both the commissioning phase as well as
accelerator operations efficiently. Over the last years larger
updates like operating system upgrades of all control-system
computers have been performed multiple times with mini-
mal downtime. The strategy of testing changes on a devel-
opment network before deploying them to production has
helped significantly to improve the quality of FRIB’s soft-
ware before deploying to production. Overall, FRIB’s CI and
automatic-deployment infrastructure has proven invaluable
in improving repeatability and thus increasing confidence in
its control system.
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