
CONTROL SYSTEM VIRTUALIZATION 
AT KARLSRUHE RESEARCH ACCELERATOR

W. Mexner∗, B. Aydt, D. Hofmann, E. Bründermann,
E. Blomley, M. Schuh, A.-S. Müller, Karlsruhe Institute of Technology, Karlsruhe, Germany

S. Marsching, aquenos GmbH, Baden-Baden, Germany

Abstract
With the deployment of a Storage Spaces Direct hyper-

converged cluster in 2018, the whole control system server
and network infrastructure of the Karlsruhe Research Accel-
erator have been virtualized to improve the control system
availability. The cluster with 6 Dell PowerEdge R740Xd
servers with 1,152 GB RAM, 72 cores and 40 TB hypercon-
verged storage operates 120 virtual machines in total. We
will report on our experiences running EPICS IOCs and the
industrial control system WinCC OA in this virtual environ-
ment.

INTRODUCTION
The Karlsruhe Research Accelerator (KARA) at KIT [1]

is a 110m 2.5 GeV electron storage ring with a 53 MeV mi-
crotron and 500 MeV booster. The design of the KARA
control system is based on EPICS 7.0 with Control System
Studio (CSS) as the main operators interface to the con-
trol system. Due to historical reasons, the beam lines are
controlled by TANGO and the commercial SCADA System
WinCC OA 3.15 [2].

Already in 2014, irst steps in control system virtualization
were successfully taken based on KVM at FLUTE [3] and
also at KARA with a small Hyper-V Cluster with a network
attached storage for the virtual machines (VM). As most of
the control system servers had to be replaced in 2017, the
decision was taken to move towards a complete virtualization
of all servers. The reasons have been:

• Higher control system availability due to the ability to
have zero-downtime hardware and base-OS updates
through live-migration of VMs

• The ability for a VM to restart on another host in the
event of sudden hardware failure

• Automatic deployment of new servers without any hard-
ware depencies and without buying extra servers.

• Easy resource management of storage and RAM.
• Simple hyper-visor based backup routines
On the other hand, virtualization introduces also new

pitfalls:
• As it is easy to create new VMs, you can also easily

keep preliminary versions of control servers. These old
dormant VMs can deviate far from the actual control
system baseline causing a lot of trouble, if inadvertently
started.

• Automatic migration: It is tempting to conigure auto-
matic migration of control servers in case of hardware

∗ wolfgang.mexner@kit.edu

failures of a virtualization cluster, but if you have not
really a high availability cluster, then this means restart
of the servers on a new node causing short interruptions
of several servers.

• Control over virtual networks: It is very comfortable
having also the network virtualized. But changing from
one network to the other means only changing a number
for the network adapter, shutting down the network, if
inadvertently changed.

• Network stability: Your cluster backbone has to be
really stable. From experience, some control hard-
ware has a corrupt network stack implemented, working
badly with a virtualized environment

• Resource over provisioning: Virtual machines are split-
ting the maximum I/O of the virtualiziation hosts.
Therefore you need to take care for the I/O load of
all virtual machines.

HYPER-V CLUSTER CONCEPT
For KARA we started with the traditional concept of a

network attached storage (RAID 5 with 16 hard disks, con-
nected with 10 GBit Ethernet) for the VM images and a pool
of Hyper-V compute hosts. Quickly we found that in this
simple setup with around 60 virtual machines the limiting
factor was the I/O capacity of the NAS storage slowing down
all virtual machines.

In 2016, Microsoft introduced the concept of Storage
Spaces Direct with Windows Server 2016, so we decided to
test for the next productive cluster this promising concept.
Storage Spaces Direct [4] uses industry-standard servers
with local-attached drives to create highly available, highly
scalable software-deined storage at a fraction of the cost
of traditional SAN or NAS arrays. Its converged or hyper-
converged architecture radically simpliies procurement and
deployment, while features such as caching, storage tiers,
and erasure coding, come together with the latest hardware
innovations such as RDMA networking and NVMe drives.

Hardware Concept
The cluster consists of 6 Dell PowerEdge R740Xd servers

each having 3.2 TB NVME for cache, 3.2 TB SSD for Hot-
Data Tier and 16 TB HDD for Cold Data and a Intel Xeon
Gold CPU with 12 cores, resulting in a inal cluster capacity
of 1,152 GB RAM, 72 cores and 40 TB storage (see Fig. 1).

In 2019, the control group faced the problem, that the
used version of WinCC OA (3.11) was discontinued and
not anymore running under modern operating systems. In
addition, the newest version 3.15 was incompatible to the

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPL009

Control System Infrastructure
MOMPL009

143

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 1: Cluster hardware concept

old version, therefore a control system upgrade for all 18
beamlines in a single shutdown was required. In this situ-
ation, it was decided to move to a fully virtualized control
system environment for all beamlines. Instead of installing
new control system servers at each beamline, all originally
separate private networks for each beamline have been vir-
tualized and connected with 10GbE to the new Hyper-V
Cluster (see Fig. 2). The control server has been conigured
once and cloned once for each beamline with a dedicated
coniguration ile and virtual network interface. The whole
SCADA communication was sped up by a cluster internal
network between all servers.

Figure 2: Beamline virtualization concept

Licensing
As it is a commercial software, WinCC OA requires USB

dongles for operation. This problem was solved by an exter-
nal USB dongle server, allowing to attach the USB dongle
virtually to a selected VM.

Networking
The internal cluster network is handled by a QLogic net-

work board equipped with two redundant RDMA capable
10GbE ports, which are conigured as a team. So the whole
internal cluster network is handled by 12 separate 10GbE
ports. For external communication, two 10GbE ports are

conigured as a team as well connecting all virtual networks
(VLANs) to the internal Hyper-V fully virtualized network
switch, allowing to connect each VM to every network re-
quired, also when a VM is transferred from one node to
another.

CONTROL SYSTEMS VIRTUALIZATION
WINCC OA

Structure
WinCC OA Version 3.15 is the overall Supervisory Con-

trol and Data Acquisition System (SCADA) for all KARA
beamlines (see Fig. 3). WinCC OA is the interconnec-
tion between the TANGO based beamline and the EPICS
based KIT synchrotron control. The beamline control with
SPEC as command UI and WinCC OA as graphical UI are
connected via an own developed TANGO interface to the
SCADA system.

Figure 3: WinCC OA SCADA Concept

Performance Constraints
The central WinCC OA SCADA server is logging around

4000 values with 1 Hz to disk, resulting in a continous I/O
load to the virtualization server. Periodically additonal load
is caused by the VEEAM backup. As this was causing some
latency, the VM of the central server was moved to a replica-
tion node. This replication node is a separate virtualization
server, which is permanently cloning all hard disk changes
to the central cluster disk. So in case of a failure of this
external server, Hyper-V is performing an automatic failover
restarting the server inside the cluster. By this the central
server has the full I/O capacity of a barebone server, but still
the advantages of hardware virtualization.

Introducing Docker
A typical control VM requires around 40 GB of harddisk

space plus around 4 GB of cluster RAM. In a irst test we
found that WinCC OA is smoothly integrating into a Docker
environment with portainer as graphical Docker manage-
ment tool. Such a docker image requires only 1 GB of RAM
and can be handled much more much easily than a full vir-
tual machine. At the moment we are preparing the Docker
images for the irst beamlines.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPL009

MOMPL009
144

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure



EPICS
Server Concept

Most EPICS servers (IOCs) run inside the virtualized en-
vironment. This is possible as most hardware is nowadays
controlled via Ethernet (or serial interfaces that can be con-
verted to Ethernet). The notable exception to this rule are
the beam-position monitors, the low-level RF system, the
bunch-by-bunch feedback system, and the data acquisition
devices, which all run EPICS IOCs directly on embedded
computers that are built into these devices.

The virtual environment for the EPICS servers is provided
by three virtual machines: one for IOCs running in produc-
tion mode, one for Java-based servers related to EPICS ser-
vices (e.g. the Control System Studio alarm server), and one
for testing new IOCs. This setup has proven suicient as
in a virtualized environment, which can provide suicient
CPU and memory resources, there is no gain in distributing
IOCs across several computers.

Issues with Link Aggregation
As mentioned earlier, we use link-layer aggregation on

the virtual machine hosts in order to improve both perfor-
mance and availability. While this works ine for the network
interfaces that are part of the I/O backbone of the cluster,
it causes unanticipated problems when being used for the
network interfaces to the “outside world”.

These problems are caused by a signiicant number of
embedded devices, which have a wrong implementation of
the TCP/IP stack. Due to the way link aggregation of the
bonded VM host network adapters (NICs) works, a diferent
source MAC address is used depending on which of the
bonded NICs the packet is sent. When using the irst adapter,
the packets originate from the MAC address of the VM as
expected. However, when using the second adapter, the
packets originate from the MAC address of the network
interface in the host system. This means that packets sent by
the same VM will randomly have two diferent source MAC
addresses. By default these devices should use the address
resolution protocol (ARP) to resolve the source IP address
of a packet back to a destination MAC address. Instead,
they simply send the response back to the originating MAC
address. Hyper-V, however, discards packets that are targeted
at the IP address of a VM, but specify the destination MAC
address of the host system.

In theory, one should be able to resolve this issue by setting
the load-balancing mode to “Hyper-V port” or using the
LACP instead of the static teaming mode [5]. The irst
option did not seem to reliably ix the problems for us and
the second option did not work reliably either, seemingly
because of some compatibility problems with the Cisco
network switches that we use.

For this reason, we had to implement a workaround. In-
stead of directly communicating with devices that are af-
fected by these problems, we use a Raspberry Pi mini-
computer that acts as a reverse proxy between these devices

and the Hyper-V virtual machine. This ixes the problems
completely.

AUTOMATIC SERVER DEPLOYMENT
One of the goals of virtualization is making the opera-

tion of IT systems more eicient by reducing the number of
hardware systems that need to be deployed and maintained.
However, considerable time and efort is still needed for the
deployment and maintenance of systems installed inside the
virtual machines. In order to further reduce this efort, tools
that automate the deployment of operating systems and soft-
ware and help with keeping the systems’ conigurations up
to date are needed. Very much like virtualization helps with
reducing cost by reducing the number of “real” hardware
systems, automation tools help by efectively reducing the
number of coniguration proiles that need to be managed
manually.

Initial Deployment
Originally, we used Cobbler [6] for automating the instal-

lation of Ubuntu Linux systems (both inside virtual machines
and on real hardware systems). However, we quickly became
unhappy with how Cobbler worked. In particular, it lacked
suicient support for customizations and was hard to inte-
grate into our existing environment of network management
tools. Another issue was that it had a signicant number of
bugs and was poorly maintained. For example, no Debian
packages were provided for recent versions and such pack-
ages could not be easily built from the source tree either.
For these reasons, we developed our own solution called
Vinegar [7].

Vinegar is entirely written in Python and integrates a
HTTP and TFTP server. Using the Jinja template engine, it
irst renders coniguration iles for GRUB 2, delivering them
over the TFTP server. Subsequently, the Linux kernel and
initial ramdisk of the installer system are loaded from the
TFTP server by GRUB, and the installer system then loads
its coniguration iles (again templates rendered with Jinja)
via HTTP. This setup has proven to be very easy to use and
integrates perfectly with our existing environment.

Coniguration Management
Once the operating system is installed, one still has to

manage the system coniguration (installed software com-
ponents, coniguration iles, etc.). In contrast to deploying
a new system, this typically is a recurrent task as the target
coniguration of a system is a moving target due to software
updates and coniguration changes.

We evaluated four diferent solutions for managing con-
igurations: Ansible, Chef, Puppet, and SaltStack. Chef and
Puppet are written in Ruby while Ansible and SaltStack are
written in Python. While we already had signiicant expe-
rience in developing and maintaining software written in
Python, we had no such experience in Ruby. This is why
we discarded Chef and Puppet early on. While Ansible and
SaltStack have some similarities, Ansible seems to be a bit

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPL009

Control System Infrastructure
MOMPL009

145

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



more limited: It exclusively uses SSH to manage systems,
which makes it use for systems running Windows more dif-
icult and limits the performance. SaltStack, on the other
hand can use SSH like Ansible, but it also has an integrated
high-performance transport based on ZeroMQ, that provides
superior performance when managing a large number of sys-
tems and works on Windows without any hassle.

For these reasons, we decided to go with SaltStack [8]
and have been using it for about three years without ever
looking back.

SaltStack is automatically installed on target systems as
part of the automated installation of the operating system.
Once installed, a system automatically appears in SaltStack
and subsequently, coniguration proiles can be assigned.
We use the coniguration proiles for a number of purposes,
e.g. managing the DNS and DHCP servers of the control-
system network, managing the operator consoles (installing
Control System Studio and keeping panels up to date), and
managing EPICS servers (installing the EPICS environment,
checking out EPICS IOCs from the source code repository
and compiling them). Besides reducing the time and efort
needed to maintain these systems signiicantly, SaltStack has
brought us other advantages: The coniguration proiles in
Salt also serve as a centralized documentation of the system
coniguration (due to the possibility to have comment sec-
tions inside the proile deinitions) and by having centralized
coniguration proiles, one never has to worry again about
whether a coniguration change has really been applied to
all afected systems.

At the moment, we are looking into also using SaltStack
to manage the coniguration of some embedded devices:
SaltStack comes with a component called Salt Proxy that

allows managing devices that cannot run Salt itself. This
component comes bundled with a number of plugins (e.g. for
managing network switches via SNMP) and we are looking
into writing our own plugin so that it can be used to manage
our data-acquisition systems from D-TACQ.

CONCLUSION
We successfully virtualized the EPICS and WinCC OA

control systems servers for KARA and the beamlines oper-
ated at the KIT synchrotron using a Hyper-V storage spaces
direct cluster. Vinegar and StaltStack are powerful tools for
the automatic server deployment.

REFERENCES
[1] Karlsruher Research Accelerator KARA, https://www. 

ibpt.kit.edu/kara

[2] WinCC OA, https://www.winccoa.com

[3] W. Mexner et al., “Update on the Status of the FLUTE Control 
System”, in Proc. PCaPAC'18, Hsinchu City, Taiwan, Oct. 
2018, pp. 54-56. 
doi:10.18429/JACoW-PCaPAC2018-WEP10

[4] Storage Spaces Direct, https://docs.microsoft.com/
en-us/windows-server/storage/storage-spaces/
storage-spaces-direct-overview

[5] E. Siron, “Fixing Erratic Behavior on Hyper-V with Network 
Load Balancers”, https://www.altaro.com/hyper-v/
erratic-behavior-hyper-v-network-load-balancers/

[6] Cobbler, https://cobbler.github.io/

[7] Vinegar, https://github.com/KIT-IBPT/vinegar/

[8] SaltStack, https://www.saltstack.com/

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPL009

MOMPL009
146

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure


