
CONTROL AND ANALYSIS SOFTWARE DEVELOPMENT AT THE
EUROPEAN XFEL

S. Brockhauser†1, M. Beg, M. Bergemann, V. Bondar, C. Carinan, R. Costa, F. Dall'Antonia,
C. Danilevski, W. Ehsan, S.G. Esenov, R. Fabbri, G. Flucke, D. Fulla Marsa, G. Giovanetti,

D. Goeries, S. Hauf, D.G. Hickin, T. Jarosiewicz, E. Kamil, Y. Kirienko, A. Klimovskaia, T.A. Kluyver,
D. Mamchyk, T. Michelat, I. Mohacsi, A. Parenti, R. Rosca, D.B. Rück, R. Schaffer, A. Silenzi,

M. Spirzewski, S. Trojanowski, C. Youngman, J. Zhu, H. Santos, H. Fangohr2

European XFEL, Schenefeld, Germany

1also at University of Szeged, Szeged, Hungary, and
Biological Research Center, Szeged, Hungary

2also at University of Southampton, Southampton, U.K.

Abstract
Agile Project Management (Agile PM), coupled with the

DevOps concept, has been worked out as a fundamental
approach in a highly uncertain and unpredictable environ-
ment to achieve mature software development and to effi-
ciently support concurrent operation [1]. At the European
XFEL[2], Agile PM and DevOps have been applied to pro-
vide adaptability and efficiency in the development and op-
eration of its control system: Karabo[3,4]. In this context,
the Control and Analysis Software Group (CAS) has de-
veloped in-house a management platform composed of the
following macro-artefacts: (1) Agile Process; (2) Release
Planning; (3) Testing Infrastructure; (4) Roll-out and De-
ployment Strategy; (5) Automated tools for Monitoring
Control Points (i.e. Configuration Items[5]) and; (6) Inci-
dent Management[6]. The software engineering manage-
ment platform is also integrated with User Relationship
Management to establish and maintain a proper feedback
loop with our scientists who set up the requirements. This
article aims to briefly describe the above points and show
how agile project management has guided the software
strategy, development and operation of the Karabo control
system at the European XFEL.

INTRODUCTION
European XFEL is a new facility with six scientific in-

struments as experimental stations at the end of its three
SASE beamlines[2] producing trains of very short X-ray
pulses. While the electrons are accelerated along a 2.1 km
long tunnel, the SASE photon beams are created and trans-
ported in an additional tunnel system with the total length
of 3.6 km. The accelerator machine is operated by DESY[7]
and is controlled by the DOOCS [8] control system which
is also supporting the FLASH facility. In contrast, EuX-
FEL’s photon transport and its experiments at the scientific
instruments are controlled by a novel in-house developed
control system Karabo [3,4].

Karabo version 2.1.5 has been released in March 2017
and has been used to start the commissioning of the first

beamline SASE1. Although this version could already sup-
port basic demonstration setups properly, it was lacking a
huge list of essential control system features and was still
suffering from reliability and stability issues. Hence, con-
trol software framework development had to be continued
parallel to providing 24/7 on-call support for the commis-
sioning and later even user operation activities (see the ap-
plied priority pyramid on Fig. 1). Next to on-call support,
the parallel commissioning of continuously upcoming in-
strumentation set an additional challenge because of the
conflicting and frequently changing priorities which was
heavily influencing the development roadmap.

Another challenge was that only a few developers knew
the Karabo system and even less the code itself. Progress
required the introduction of new personnel while keeping
and spreading the know-how, as well as avoiding single-
point of failures and technical debts.

With the support of our management, we have intro-
duced an efficient group structure, and took appropriate
management, software engineering and technology choices
for addressing these issues and have successfully driven
the facility through its commissioning phase and started its
operation.

Figure 1: Priority of Operation vs. Development.

SOFTWARE ENGINEERING PLATFORM
The software engineering management platform has

changed according to the different phases it had to support:
• software framework development before commission-

ing. In a short period before commissioning, we had
the chance to implement major (and incompatible)
changes in the framework which would have been very
difficult during operation. In this limited period, we

† sandor.brockhauser@xfel.eu

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPR004

MOMPR004
158

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Systems Engineering, Collaborations, Project Management

have focused on the implementation and consolidation
of these fundamental steps.

• essential development cycles with active deployment
support during commissioning. During commission-
ing, the highest priority became the operation, so the
development had to follow it and focus on improving
the reliability of the system.

• feature developments with stable deployment support-
ing the operation. Achieving the state when the de-
ployed system became reliable and more stable, the fo-
cus could move from firefighting to a roadmap based
feature implementation. The roadmap still has to be
continuously adjusted to the actual requirements of the
scheduled high impact experiments.

Below, we detail the artefacts as we have applied then in
the last phase when moving from commissioning to opera-
tion.

Agile Management
To be able to respond to dynamically changing require-

ments and/or priorities, we have decided to follow agile
principles [9]. In an agile environment, people are prepared
for changes and are ready to refine the goals as they be-
come relevant and gain priorities. But the efficient execu-
tion of such process requires maturity at company level. It
is very important that software development team under-
stands and appreciates the process to be followed, but it is
equally important that the whole company also under-
stands and buys-in this process and especially the inter-
faces of the developers with the scientists as customers,
and with upper management who can change the priorities.
For this purpose, the CAS Agile Process (as well as its
modifications, see version 3 as Fig. 2 /note that better res-
olution figure is available on the corresponding poster/) has
been compiled into a figure which has been announced and
explained on different forums. This clarifies interfaces, but
also defines roles and responsibilities:

Figure 2: Agile Process v3.0.

• CAS Contacts. Main and deputy contact persons are
assigned to each customer group (e.g. scientific instru-
ment). While the main contact has the responsibility to
keep the connection, collect requirements and suggest
priorities for the backlog, with their deputies they also
form a network which allows keeping the know-how
spread and avoid isolated solutions.

• Chapters. To support the highest priority instrument
groups, we could allocate dedicated people (e.g. main
and deputy contacts and a data analysis scientist) who
are closely working together with the representative of
the instrument who plays the product owner (PO) role
and sets the priorities for the backlog items. Chapters
supporting instruments in the same phase have their
Daily Standup Meetings together to ensure communi-
cation and help finding coherent solutions.

• Squad. For the implementation of a high priority stra-
tegic deliverable, we can form a group of developers
with required skillset who can work in sprint(s) as a
SCRUM[10] team. An external responsible is assigned
as PO who follows the development and can make im-
mediate decisions.

• Task Forces. For longer projects which people cannot
be assigned exclusively for (like in case of a squad), a
group of assigned people with relevant experience and
interests (including external responsible) work to-
gether to align long term visions and build mid-term
goals to be prioritized in the backlog.

• Executive. While the Group Leader is the overall re-
sponsible who reviews the priorities, it is the Project
Manager who ensures that the processes are properly
followed and resources are optimally allocated. Tech-
nical Coordination Team (TCT) and the Chief Data
Analysis (DA) scientist are responsible for the design
of control [11] and data analysis[12] tasks respectively.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPR004

Systems Engineering, Collaborations, Project Management
MOMPR004

159

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

• Test Engineers. All new software components pass
unit and integration tests. Additionally, release candi-
dates are checked against regression tests. Test engi-
neers feed then back to the developers directly.

The majority of the development work is done along a
Kanban board which features the prioritized Backlog; In
progress; (code) Peer Review; In Test; Done; and Blocked
columns. The Kanban process supported by Daily
Standups (in group of 6-8 developers) is materialized
through redmine [13] tickets, states, and gitlab [14] merge
requests.

User Relationship Management
An important element of the agile process is the manage-

ment of the relationship with our users and scientists. Not
only they should use the defined interfaces, but they shall
also engage with the process and take specific responsible
roles, e.g. being the PO of a Squad, or Chapter. Most im-
portantly, regular feedback is needed. Hence, the summary
of the weekly chapter review meetings (which also sets the
priorities) is collected and announced to the whole facility.
This provides visibility and also transparency among all
scientific instruments as our customers. While bi-weekly
‘Did you know?’ snippets are broadcasted after each
Karabo release, a demonstration meeting is also held where
users’ feedback and suggestions are collected and chan-
neled to the relevant Task Force.

Roadmap Management
Task Forces provide mid-term goals for the TCT and

Chief DA who are responsible to check the design, opti-
mize the dependencies, and regularly update the roadmap.
Features from the backlog are organized in a matrix to see
the affected severity groups, like stability, performance, ro-
bustness, usability, etc. This is used to help the prioritiza-
tion and the finalization of the scheduling on the roadmap.
The roadmap prepared for 1-1.5 years in advance with the
details of the releases planned for the coming year is an-
nounced. Note that changes can occur in the roadmap, e.g.
as a consequence of changing priorities which is also an-
nounced.

Software Quality Assurance
We apply some basic programming and naming princi-

ples for code cleanness (e.g. camelCase[15], loose Hungar-
ian notation[16], PEP8 [17]), Unit tests for functions and
modules (e.g. scan) and require integration tests with dif-
ferent modules (e.g. devices) for each sw component.
While we manually monitor our test-coverage, automatic
CI [18] tests are performed on the commits to provide im-
mediate feedback to the developers. A manual process,
Gitlab’s code review is also applied to ensure a second eye
quality check before merging to the master branch. While
acceptance tests (e.g. Karabo device implementation [19])
is done with the scientists requested the development, other
manual type of tests (e.g. stress and performance tests) are
performed occasionally.

Smoke and subsequent regression tests are performed on
all release candidates. These regression tests include sev-
eral test suits and are performed on all operating systems
Karabo is used on at EuXFEL. While some of the test suits
contains local tests only, there are distributed system test
too, some of which also involves hardware-in-the-loop
tests. Note that hw interaction can be tested in our Test La-
boratory using different firmware setups of the controllers
(e.g. widely used Beckhoff PLCs).

While our GUI tests are automated using the Squish
tool [20], they are integrated to our fully automated regres-
sion test system implemented in robotframework [21]. All
logs and results are automatically collected and sorted to
facilitate the communication between the test engineers
and the developers until the release gets accepted and
tagged.

Roll-out, Deployment Management
The roll-out of a freshly tested Karabo release is an-

nounced in advance and is planned together with the instru-
ment responsibles. Typically, a shutdown period is selected
to provide scope for performing some final tests with spe-
cial hardware, too (e.g. DAQ and special detectors), before
its real use. The deployment itself is automated as Ansible
[22] playbooks which also supports an easy redeployment
of the system if needed. Shutdown and the subsequent
startup period also allows a sequential deployment (first at
the tunnel systems, and then at the instruments) which al-
lows an easier identification of any occurring glitches.

Between two deployments, only hotfixes are supported
(see Fig 3) which can contain bugfixes and/or address spe-
cific issues.

Figure 3: Karabo release and deployment cycle.

Monitoring and Incident Management
While the orchestrated deployment of specific versions

of Karabo device servers on the control network is man-
aged by Ansible, an option for on-the-fly manual develop-
ment is also available. While Karabo can show in its dy-
namic topology viewer the available servers within a sec-
tion of the control system, in a so called Karabo Topic, a
global overview of which version of servers are active or
when they were up last time is not provided on the full con-
trol system level inside Karabo. Instead, this functionality
is implemented in an external tool, the OCD Manager
which provides a web interface for managing incident
calls. Hence an integrated environment is provided to reg-
ister the incident and to have a first glimpse. The OCD
Manager is also providing a link to the electronic logbook
used at EuXFEL where technical details of the problems as

.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPR004

MOMPR004
160

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Systems Engineering, Collaborations, Project Management

well as the solutions applied are provided in a collaborative
environment. Incidents are carefully evaluated on a weekly
manner when people scheduled for on-call duty on the
week before are handing over to the OCD team of the sub-
sequent week. Note that OCD Manager can also provide
statistics on how many incidents have occured (and how
long the interventions took) on different components
and/or instruments in a selected period. This tool is a great
help in identifying problems and how much they cost
which is an important input for prioritizing future develop-
ments.

CONCLUSIONS
 In the last three years, the CAS group has managed an

increase of its size from 12 to 28 while efficiently integrat-
ing the newcomers to the group structure by applying men-
torship and a welcome structure with a training program. A
good and motivating atmosphere has been achieved where
the group members are happily volunteering to help one
another or even take on-call support duties. During this pe-
riod, a workable system was delivered in spite of a difficult
task prioritization management environment. The Karabo
control system has been made stable and reliable, and is
ready to integrate newer and more sophisticated features.
As the stability and robustness of the system has increased,
the amount of required support by on-call has measurably
decreased; the execution of experiments became more ma-
ture. By the increased performance, GUI responsiveness,
and added tools, like the scan-tool, the usability of the sys-
tem has been radically improved. After cumbersome early
experiences at SASE1 (FXE and SPB) in 2017, the im-
proved Karabo has allowed smooth starting up of the new
instruments at the end of 2018 (SCS and SQS at SASE3)
and early 2019 (MID and HED at SASE2).

This achievement is the result of the whole of CAS
group which executed the described software engineering
processes, but it would not have been possible without the
support of management and the continuous devoted and
sometimes determined assistance of our scientists.

REFERENCES
[1] Levitt, R. E. "Toward Project Management 2.0”, Engineer-

ing Project Organization Journal,

[2] M. Altarelli et al., XFEL: The European X-ray Free Elec-
tron Laser technical design report, DESY XFEL Project
Group, 2006.

[3] B B. C. Heisen et al., “Karabo: An Integrated Software
Framework Combining Control, Data Management, and
Scientific Computing Tasks”, in Proc. 14th Int. Conf. on Ac-
celerator and Large Experimental Control Systems
(ICALEPCS'13), San Francisco, CA, USA, Oct. 2013, paper
FRCOAAB02, pp. 1465-1468.

[4] S. Hauf et al., J. Synchrotron Radiat., vol. 26, pp. 1448–
1461, 2019.

[5] J. Dugmore and S. Taylor, ITIL® V3 and ISO/IEC 20000,
The Stationery Office, 2008, pp. 2-5.

[6] J. J. Cusick, and G. H. K Ma. "Creating an ITIL inspired
Incident Management approach: Roots, response, and re-
sults." 2010 IEEE/IFIP Network Operations and Manage-
ment Symposium Workshops. IEEE, 2010.

doi:10.1109/nomsw.2010.5486589

[7] https://desy.de/

[8] https://confluence.desy.de/display/
FLASHUSER/User+overview

[9] https://agilemanifesto.org

[10] https://www.scrumguides.org/

[11] G. Flucke et al., “Status of the Karabo Control and Data Pro-
cessing Framework”, presented at the 17th Int. Conf. on Ac-
celerator and Large Experimental Control Systems
(ICALEPCS'19), New York, NY, USA, Oct. 2019, paper
WECPR03

[12] H. Fangohr et al., “Data Exploration and Analysis with Ju-
pyter Notebooks”, presented at the 17th Int. Conf. on Accel-
erator and Large Experimental Control Systems
(ICALEPCS'19), New York, NY, USA, Oct. 2019, paper
TUCPR02

[13] https://www.redmine.org/

[14] https://gitlab.com/

[15] https://en.wikipedia.org/wiki/Camel_case

[16] https://en.wikipedia.org/wiki/
Hungarian_notation

[17] https://www.python.org/dev/peps/pep-0008/

[18] G. Booch, Object Oriented Design: With Applications ,
Benjamin Cummings, 1991, p. 209. ISBN 9780805300918.

[19] V. Bondar et al., “Beam Position Feedback System Sup-
ported by Karabo at European XFEL”, presented at the
17th Int. Conf. on Accelerator and Large Experimental
Control Systems (ICALEPCS'19), New York, NY, USA,
Oct. 2019, paper MOPHA040

[20] https://www.froglogic.com/squish/

[21] https://robotframework.org/

[22] https://github.com/ansible

.

.

.

.

.

.

.

.

, this conference.

, this conference.

, this conference.

vol. 1, no. 3, pp. 197-210,
2011.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOMPR004

Systems Engineering, Collaborations, Project Management
MOMPR004

161

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

