
A MODEL-DRIVEN SERVICE-ORIENTED WIZARD-BASED
MULTI-TARGET DEVELOPMENT KIT FOR SUPERVISION SYSTEMS *

C. F. Afonso1, C. Larizza, Department of Electrical, Computer and Biomedical Engineering
University of Pavia, Pavia, Italy

S. Foglio, S. Gioia, M. Necchi, M. Pullia, Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
S. Toncelli, Consultant on behalf of Centro Nazionale di Adroterapia Oncologica, Novara, Italy
L. Casalegno, Consultant on behalf of Centro Nazionale di Adroterapia Oncologica, Como, Italy

1 also at Centro Nazionale di Adroterapia Oncologica, Pavia, Italy

Abstract

The operation of particle therapy facilities requires com-
plex control and supervision systems, often spanning sev-
eral software development environments, each containing
a large number of applications. While the component-
based development approach brings many benefits, the in-
tegration of the parts is still left to the initiative of each de-
veloper without a repeatable path that can be demonstrated
when the artefacts have to undergo the certification pro-
cess.

Besides the development of such control and supervision
systems is not any more limited to a network based on fixed
workstations, but mobile devices have to be taken into ac-
count introducing an extra need for enhanced security.

As part of the technological update of one of its devel-
opment environments, the Centro Nazionale di Adroterapia
Oncologica (CNAO) chose to build a development kit to
face these new challenges.

This development kit is based on models of applications
and services that are managed by wizards that configure
the general layout and create the connections among the
components so that the integration of the parts is performed
in a substantially unique way.

The developer is responsible to choose among the avail-
able models that already include the integration to the man-
datory services and use the wizards to create the applica-
tion and the project that is able to build the executable.

Developers are still able to add the specific business
logic and the required interactions; nevertheless, they will
be directed in doing so by a set of ‘hooks’ present in each
model that shall guarantee repeatability of behaviors also
in this area of the work.

In this document, we examine the development kit, high-
lighting the most valuable aspects that enable to build eas-
ily certifiable applications running in a multi-target system.
The services that support the actions performed by each ap-
plication are described in a companion paper [1].

Figure 1: The CNAO accelerators and treatment complex.

MOTIVATION
CNAO (National Centre for Oncological Hadronther-

apy) is a clinical facility, established and funded by the Ital-
ian Ministry of Health and the Lombardy Region, that uses
hadrontherapy for cancer treatments. To date, about 2500
patients completed successfully the treatment.

Hadrons (basically protons and carbon ions) are charac-
terized by a maximum of energy deposition at the end of
their range and a sharp penumbra that allows to achieve a
precise coverage of the target and an enhanced sparing of
the surrounding healthy tissues. In addition, carbon ions
are more suitable for the treatment of radio-resistant tu-
mors.

The treatment has the aim to transfer a given amount of
energy to a tumor. In doing so, the tumor is subdivided into
several slices orthogonal to the beam direction. Each slice
can be treated with several beams. Depending on the en-
ergy, beams have different characteristics. Thus, during

* This project has received funding from the European Union’s Horizon
2020 research and innovation program under the Marie Sklodowska-Cu-
rie grant agreement 675265

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA002

Software Technology Evolution
MOPHA002

187

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

each treatment, the physical conditions of the beam change
many times. The beams are produced, maintained and de-
livered by means of particle accelerators. A cycle is the pe-
riod of time the machine takes to produce a beam with
planned energies, deliver the dose to the tumor slice and go
back to the initial condition. The spill is the operation that
transfers the beam from the machine into the tumor. A full
treatment is composed of many cycles. Depending on the
physical characteristics of the beam, the equipment has to
be set into different running conditions. A running condi-
tion lasts, in general terms, the length of a single cycle. For
each device, a mapping exists relating each beam charac-
teristics with the equipment settings.

The main particle accelerator of CNAO is a synchrotron,
a circular accelerator, of about 25 m in diameter (see Fig.
1). Inside the ring, the sources, the lines of injection and
the linear accelerator are housed, so to realize a compact
layout. The Electron Cyclotron Resonance (ECR) ion
sources produce a low energy beam that is then injected
into a linear accelerator where a first acceleration occurs
up to 7 MeV/u.

Along the 78 m synchrotron circumference carbon ions
and protons beams are accelerated up to 400 MeV/u and
250 MeV, respectively. Outside the main ring there are four
extraction lines, about 50 m each, leading the extracted
beam into three treatment rooms (see Fig. 1). In each of the
two side rooms a horizontal beam is driven, while in the
central hall both a horizontal and a vertical beam are di-
rected. An experimental room is also under construction
and shall be equipped so that the beam line can be devoted
to research activities.

Because the plant activity affects human beings, building
applications to control and supervise such target has to un-
dergo a set of quality assurance activities that have the aim
to demonstrate the consistency and the reliability of the ar-
tefact; additionally, evidence of the accelerator’s correct
behavior has to be provided to the regulatory body. Much
stricter rules have been adopted by the regulatory body
since the first construction of CNAO [2, 3]. Due to the fact
the number of applications necessary to run the facility is
quite high, the amount of work for upgrading or reproduc-
ing the center would be devastating without the help of an
environment that helps to demonstrate and document the
job being done.

Besides, the traditional way of supervising the activities
in the plant, based on fixed workstation is changing in fa-
vor of more flexible tools such as tablets and possibly
smartphones. These new devices impose a new approach
to the security aspects and to the choice of development
tools that are able to encompass all the different targets.

TARGETS
The goal was to create a development kit that can create

end user applications to be used both on traditional devices
and on mobile devices with different operating systems.

We therefore chose a basic platform that natively offered
this characteristic. The choice has fallen on Xamarin [4] in
Visual Studio (MS). Xamarin allows creating applications
in native format, starting from the same source code, on
tools that have installed one of the following operating sys-
tems: Windows, Android, IOS (future use), MacOS (future
use), Linux (future use) (see 3).

In addition, the services provided and introduced in [1]
were made available to the two other development envi-
ronments that have historically been used by CNAO for the
construction of supervision applications, through appropri-
ate interfaces:

• WINCC (Siemens/ETM SCADA)
• Labview (National Instruments)
Visual Studio (MS) has been selected for the character-

istic of offering the possibility of building wizards directly
within the production tool.

ARCHITECTURE
The present CNAO control system architecture is com-

posed of 4 layers (Fig. 3Figure). The fourth and lowest
layer contains the device controllers. The third layer aggre-
gates the outcome of the underlying layer and creates a
common interface based on OPC technology. The second
layer contains the data that belongs to both the real-time
and the project and configuration databases. The first layer
is devoted to the end user applications [5]. From the point
of view of the applications the second and third layer are
optional and can be by-passed. Thus, the end user applica-
tions in general can communicate with a database or an
OPC-UA [6] based controller (See Fig. 2 and Fig. 3).

The applications built with the development kit de-
scribed in this paper, that we named CF2020, shall be part
of level 1.

Front End Electronics
(Signal Conditioning)

Level 4
Equipment Electronic Layer

Level 1
End User Applications

Master
Timing

Repository

Signal
Acquisition

&
Distribution

System

Digital &
Analogue Signals

Digital Signals

OPC-UA

OPC

DB Adapters

O
P

C
-U

A

TCP/IP

Digital &
Analogue
Signals

O
P

C
-U

A

OPC-UA

Custom

Level 3
Equipment Server Layer

Level 2
Data Management

Layer

Figure 2: CNAO Control System Layered Architecture.

When building software for plants such as the CNAO
medical center, several issues have to be taken into ac-
count: security and safety, interconnection protocols, high
robustness for unpatrolled subsystems,

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA002

MOPHA002
188

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Legend

Xamarin Framework

CF2020 Support Library

DB Client
Access Library

Visual Control
Libraries

OPC-UA
Client

Library

End User
Applications

Architecture
Support Libraries

OPC-UA Servers

RDBMS

Model Based
Projects Templates

(CF2020)

Commercial/Open
Source Products

Users
Development
 (out of scope)

CF2020 Project

Field
(out of scope)

Legacy CNAO Library

Existing CNAO
development

Labview and
WINCC
Support

de
sk

to
p

ta
bl

et

H
ol

og
ra

ph
ic

 d
ev

ic
e

ph
on

e

Generated End
User Applications

Canvas
(CF2020)

File System

CF 2020 Services

Security
Support Library

Projects Wizards
(CF2020) Field Object

Classes
(CF2020)

Field Object
Classes

Generator
(CF2020)

RT-DB

Figure 3: CF2020 Development Kit Architecture.

homogeneity of development regardless the devices and
the operating systems on which the software will run, long
term products life cycle encompassing decades and not
simply years or months.

CF2020 is an innovative framework for building such
mission critical software allowing nevertheless to keep a
low time to market factor.

The applications produced using the CF2020 approach
shall adhere to the MVVM paradigm [7].

The development kit includes (see Fig. 3):
• A set of model-based project templates. The templates

are composed of:
o Project files that are used to compile and build the

final application.
o C# source files, XAML source files and code

snippets that implement the models: these files
contain parameters that shall be translated into
code by means of the information supplied by the
developer when using the project wizards. The
files shall be grouped into View, ViewModel and
Model directories in the final project as recom-
mended by the MVVM paradigm.

o Files containing run time configuration settings
for tuning the application in different target envi-
ronments (e.g. DB name).

• A field class generator that is able to build C# classes
that represent in a suitable way the field objects (i.e.
database tables and views and OPC-UA server fami-
lies: an OPC-UA server family is a group of OPC-UA
objects having the same variables). The generated
class files are kept in predefined libraries where can be
found by the wizards.

• Project wizards, which are able to build the final pro-
ject on the base of the chosen model by selecting the
suitable files, substituting the parameters inside the
files using the information supplied by the developer,

generating the suitable code, building the run time con-
figuration files and creating the project directories
containing the generated files.

• A set of libraries that shall support the implementation
of the behavior defined by the models, the client access
to the field and to the ancillary services such as file
system access and logging system access and take care
of the security aspects. These libraries depend on other
widely used support libraries that are open source or
commercial.

• The development kit is completed by a set of web ser-
vices that supply basic functionalities such as access to
remote databases and file systems. The description of
such services is the topic of another paper in this con-
ference [1].

SECURITY
Applications that run in a distributed and open environ-

ment, possibly from mobile tools, need an advanced au-
thentication and authorization system. Each model in-
cluded in CF2020 has the ability of requesting the identifi-
cation of the user. Once authentication is performed, these
models are able to display only functionality that the user
has permission to access via authorization tokens (i.e. ena-
bling buttons, menu items, fields or full panels). The au-
thentication and authorization of clients and users is per-
formed using the OpenID Connect standard, which is
based on OAuth 2.0 [8]. The details of the adopted mecha-
nism are outside the scope of this document: the service is
introduced in a companion paper in this conference [1].

MODELS
Model Driven Architecture has been an approach to

building applications for a long time [9, 10]. It is an exten-
sion of design patterns to encompass the whole application.
Models require a deep understanding of the requirements
and the commonalities among applications that address a

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA002

Software Technology Evolution
MOPHA002

189

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

common domain. Thus, a survey of most of the applica-
tions presently running in the CNAO Control and Supervi-
sion System has been done before defining and implement-
ing the tools that generate the application canvases. About
100 applications have been taken into account. The appli-
cations were grouped in the following categories:

• Applications managing data mainly contained in rela-
tional DBs or file systems for configuration and data
management purposes.

• Applications managing the core business workflow,
i.e. applications that are aimed to obtain the delivery
of the treatments on the patients or applications that
are able to show the amount of work done and the
amount of work to be done.

• Applications managing a single device in a family (ex-
ecuting commands and displaying indicators of a sin-
gle device).

• Procedures, i.e. sets of operations performed on groups
of devices with a given sequence to obtain a change in
the state of the plant or data to be analyzed in order to
evaluate the state of the plant.

• Applications to manage groups of devices (executing
commands and displaying indicators in a group of de-
vices).

• Applications to show the status of group of devices
(summaries of the status of devices).

For these categories of applications several models have
been devised. In general, models are composed of pages on
which data is displayed and managed, a navigation system
among the pages, a set of menu items for each page and
possibly a toolbar to execute standard commands such as
search and filters. A page can be configured having several
panels. The models define also the connection to all the
services needed to manage the data of the applications. The
models are briefly summarized as follows:

• A model that allows navigating between groups of en-
tities of different types. For each group, a list of objects
is displayed. Selecting an object displays information
relating to that object. Objects can be added and de-
leted and the information relating to each object can be
modified. The objects can be represented by infor-
mation residing in an instance of a single DB table or
in instances of different tables, one of which represents
the main table and the others the details. The infor-
mation on the objects can reside on a single page or on
different pages. It is possible to order, search and filter
the information presented. Information can be repre-
sented in visual controls, tables or graphs

• A model that allows data to be transferred from files
contained in file systems to database tables. The model
allows users to select a set of files. Afterwards, the
model indicates if the data contained in the files are
already present in the database, and if so, whether their
values have been changed.

• A model that allows viewing and executing commands
on a single instrument.

• A model that allows performing a series of commands
on properties of field objects. The model allows select-
ing the set of objects and properties to operate on, to
start the execution of the commands and to view the
status of the going on operations for each object. The
operations on the objects can take place in series (i.e.
one object at a time) or in parallel by performing a set
of processes at the same time. The execution of the
commands can be suspended and resumed. This model
is able to group operations into the following tasks: in-
itialization, execution, analysis, completion and finali-
zation. The model maintains a log system for each op-
eration.

• A model that allows viewing the status of the opera-
tions to be performed on different physical resources.
This model represents the status of each operation in a
calendar for each resource, assigning different values
and colors according to the state of each operation. The
state of the operations is kept in a database where other
applications can update the values.

• A model that allows managing a state machine. The
machine can be started, suspended, restarted and
stopped. The machine status data can be represented in
visual controls, tables, graphs. The advanced version
of the model allows adding detailed panels to the main
page that shows the status of the application, therefore
allowing for the management of extra data other than
the state machine.

• A model that allows viewing the status of a large num-
ber of components and perform commands on them.
The model can contain multiple pages and each page
can be split into different panels to allow a clearer view
of the data that can be displayed in visual controls, ta-
bles or graphs.

• A model that allows executing procedures on the sys-
tem. The model is the composition of the previous
model that constructs the state machine and the previ-
ous model that executes commands on field objects.

WIZARDS
The project wizards allow the user to select the desired

model, to select the targets operating system on which the
application will run, to choose the pages that will be in-
cluded in the final applications, assign the model configu-
ration parameters and define the menu and the menu items
that will be included in each page [11, 12] (see Fig. 4).

The types of page(s) that are included into each model
depend on the model. If the pages are enabled to contain
detail panels the developer can add as many panels as
needed and possibly choose their layout.

The outcome of the wizards is a skeleton of an applica-
tion that is already a running executable. Consequently, the
developer knows that all the connections and interfaces are
respected and the basic behavior supplied by the chosen
model is fulfilled.

The skeleton contains ‘hooks’ to which the developer
can attach the code specific to the business logic of the ap-
plication.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA002

MOPHA002
190

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

The wizard is not a one-way application. The developer
can later modify the generated project adding pages, detail
panels and menu items where available. Additionally, an
undo mechanism has been developed, allowing developers
to return the generated application to a previous version of
the project whenever required.

The development kit can be extended adding new mod-
els and new wizards when the target environment requires
new types of applications [13]

A set of test cases for validating the common toolkit be-
havior is supplied. These tests shall be always executed
when a new application is built to verify that for any reason
the basic functionality have not been disrupted.

Then the procedure already devised in CNAO that fore-
sees the production of a test plan, test specifications and
test reports shall be adopted [14].

Figure 4: Building CF2020 Applications with the Wizards.

CONCLUSION

An environment such as the CNAO accelerators system
involves a sizeable effort to validate and certify the soft-
ware that manages the plant. Additionally, the introduction
of mobile devices has extended the need for security and
requires a development kit targeting many different de-
vices.

A wizard model-based supported architecture can reduce
the time required for validation and certification and allows
creating projects that build solutions for different devices
using always the same source code. The main advantages
of this approach are:

• The integration of the architectural modules and the
modules created by the wizards is made in a proved,
validated and documented way.

• The developer has a well-defined and constrained path
to integrate, validate and document the business logic
of the application.

• The risks are mitigated by reusing software and build-
ing new software following rules enforced by auto-
matic code generation.

• The wizards automatically take into account the differ-
ences of the targets and frees the developer from the
task of adapting the code to the end devices.

REFERENCES
[1] C. F. Afonso et al., “Integrating Mobile Devices Into

CNAO's Control System, a Web Service Approach to De-
vice Communication”, presented at the 17th Int. Conf. on
Accelerator and Large Experimental Control Systems

(ICALEPCS'19), New York, NY, USA, Oct. 2019, paper
MOPHA003, this conference.

[2] EN ISO 13485, Medical devices -- Quality management sys-
tems -- Requirements for regulatory purposes, 2016.

[3] IEC 62304, Medical device software – Software life cycle
processes, 2016.

[4] C. Petzold, Creating Mobile Apps with Xamarin Forms, Mi-
crosoft Press, 2016.

[5] L. Casalegno, M. Pezzetta and S. Toncelli, CNAO General
Control System, Organisation Document, Fondazione
CNAO, 2004.

[6] OPC Unified Architecture Specification Part 1: Overview
and Concepts, OPC Foundation, Scottsdale, AZ USA, 2017.

[7] The Model-View-ViewModel Pattern, https://docs.mi-
crosoft.com/it-it/xamarin/xamarin-forms/en-
terprise-application-patterns/mvvm

[8] User Authentication with OAuth 2.0,
htpps://oauth.net/articles/authentication/.

[9] S. J. Mellor, K. Scott, A. UHL and D. Weise, MDA Distilled,
Addison Wesley, 2004.

[10] M. Fowler, Patterns of Enterprise Application Architecture,
Addison Wesley, 2012.

[11] C. Afonso and L. Casalegno, CF2020 Wizards Developer’s
Guide, CNAO Foundation, unpublished.

[12] C. Afonso and L. Casalegno, CF2020 VS Wizards User’s
Guide, CNAO Foundation, unpublished.

[13] C. Afonso and L. Casalegno, CF2020 Ctrl VS Wizards
User’s Guide, CNAO Foundation, unpublished.

[14] IST 707: Validazione Software di Prodotto, CNAO Founda-
tion, unpublished.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA002

Software Technology Evolution
MOPHA002

191

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

