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Abstract 

Meaningful gesturing is important for an intuitive hu-
man-machine communication. This paper deals with 
methods suitable for identifying different finger, hand and 
head movements using supervised machine learning algo-
rithms. On the one hand it discusses an implementation 
based on the k-nearest neighbour classification algorithm 
(traditional machine learning approach). On the other 
hand it demonstrates the classification potential of a con-
volutional neural network (deep learning approach). Both 
methods are capable of distinguishing between fast and 
slow, short and long, up and down, or right and left linear 
as well as clockwise and counter-clockwise circular 
movements. The details of the different methods with 
respect to recognition accuracy and performance will be 
presented.

INTRODUCTION
Controlling video games through a gaming console or 

acting in a virtual or mixed reality environment recogniz-
ing arm, head and body motions all lead to popular and 
intuitive interface features currently in common use. Even 
in the case of industrial applications, novel interaction 
technologies are gaining in importance, e.g. to simplify 
quality assurance of manufacturing processes.

In the field of accelerators, hardware commissioning 
and maintenance use cases might profit from such novel 
interaction capabilities. For instance, wearing rough and 
dirty working gloves during cooling-water maintenance 
work is not adequate for touch sensitive devices. Interact-
ing via hand or arm gestures might be a better choice.

Today’s users of accelerator control applications have 
developed intuitions based on click-like interactions 
through a mouse or a touch-sensitive device. Both inter-
faces provide high reliability, a very accurate pointing 
capability and standardized user actions normally associ-
ated with graphical widgets. Therefore, any new interac-
tion capability such as gesture recognition will only be 
accepted by the users if it provides comparable or even 
better handiness, ease-of-use, and reliability to click-like 
interactions.

This paper discusses methods and their implementa-
tions aiming at improving the quality and reliability in 
recognizing gestures based on different finger, hand and 
head movements using machine learning algorithms. It 
compares a traditional machine learning (TML) and a 
deep learning approach (CNN) including a non-linear 
regression for extracting the features of the movement 
and a k-nearest neighbour method for movement classifi-

cation using memorized training data (traditional machine 
learning) and a trained convolutional neural network for 
classification (deep learning).

GESTURE TYPES
The consumer market provides various devices capable 

of recognizing 2D/3D spatial gestures including hand-

gestures, hand- or arm-gestures and 3-axis (yaw, pitch, 
and roll) head movements (smart glasses). The native or 
device-specific gestures such as “Closed-Hand”, “Fin-
gers-Spread” or “Nodding” can be combined with preced-
ing or following linear movements or rotations including Horizontal:  left, right Vertical: upward, downward Diagonal: upward-left, upward-right, downward-left,

downward-right Circular: clockwise, counter clockwise

In addition, each of these enriched gestures can be per-
formed as a long-or-short and slow-or-fast linear move-
ment or rotation which is projected to a virtual plane in 
front of the user.

GESTURE RECOGNITION WORKFLOW
The workflow to predict a movement associated with 

an enriched gesture consists of two distinct phases: a 
training phase and a real-time prediction phase. It is im-
portant that both the training and the real-time prediction 
phase use the same algorithms. 

The input for both phases is continuously recorded po-
sition data of the user’s input device in Cartesian (X, Y) 
coordinates resulting from finger, hand, arm or head line-
ar movements or rotations. The continuous stream of 
sensor data is pre-processed to determine the position of 
the signal within a certain time window. Optionally the 
noise floor of the measurement can be reduced or obvious 
outliers can be removed. If properly centred within the 
time window, the cleansed data array is fed into the ma-
chine learning algorithms.

Traditional Machine Learning
The basis for the traditional approach is a well-

engineered mathematical model (Eq. (1)) describing the 
movements by a set of representative parameters (fea-
tures).ܜ ൑ ሻܜሺ܎                :ܜܚ�ܜܛܜ = ܜܚ�ܜܛܜ ܜܚ�ܜܛܛ < ܜ < ሻܜሺ܎  :܌�܍ܜ = ܜܚ�ܜܛܛ + ቆቀܜܚ�ܜܛܜ −܌�܍ܜܜܚ�ܜܛܛ −܌�܍ܛቁ ∗ ሺܜ − ܜሻቇܜܚ�ܜܛܜ ൒ ሻܜሺ܎    :܌�܍ܜ = ܌�܍ܛ

(1)
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Figure 1: Recorded position sensor data (i.e. time series of 333 data points at intervals of 3 ms) associated with a Diag-
onal Upward-Right-Long-Fast movement.

Here, the parameters tstart and tend mark the start and end 
time of the recognized gesture within the analysed user’s 
finger, arm or head movement, respectively. Similar, sstart 
and send are indicating the start and end position of the 
gesture.

The features of a movement are extracted using a non-

linear regression (Nelder-Mead method) to fit consecutive 
time series of sensor data (Fig. 1) to the pre-defined 
model.

The regression reduces the dimension of the gesture 
recognition task by two orders of magnitude and is per-
formed for each Cartesian coordinate orientation (linear 
horizontal movement, linear vertical movement) separate-
ly. Fitting the polar angle PHI allows the identification of 
circular movements. If the regression algorithm converges 
and the parameters are confined within reasonable limits, 
the duration (tend – tstart) and the length (send – sstart) of the 
gesture are calculated.

Comparing sstart and send of both horizontal and vertical 
movement allows distinguishing between linear (left / 
right horizontal, up / down vertical, left / right / up / down 
diagonal) and circular (clockwise / counter clockwise) 
movements. 

During the training phase the extracted features of a 
sufficiently-sized set of training data are used to generate 
sets or clusters of learned data representing valid move-
ment types (Long-Slow, Long-Fast, Short-Slow, Short-
Fast). The resulting prediction quality of the trained mod-
el is verified with a verification data set. 

The duration and length of the movement are used as 
input for a k-nearest neighbour analysis. This classifica-
tion algorithm calculates the Euclidean distance between 
the predicted data point (duration / length) and each 
memorized learned data point. It searches the k-nearest 
neighbours to identify the learned data cluster the predict-
ed data point belongs to (Fig. 2). 

Figure 2: Predicted gesture duration / length and learned data clusters. The predicted movement (red dot) is classified as 

a Long-Fast movement. 
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Table 1: Convolutional Neural Network 

Layer (Filters) Array Size 

Input 1 x 333 x 2 

Convolution (18) 1 x 331 x 18 

ReLU Activation 1 x 331 x 18 

Pooling 1 x 165 x 18 

Convolution (36) 1 x 163 x 36 

ReLU Activation 1 x 163 x 36 

Pooling 1 x 81 x 36 

Convolution (72) 1 x 79 x 72 

ReLU Activation 1 x 79 x 72 

Pooling 1 x 39 x 72 

Fully Connected 1 x 1 x 1120 

ReLU Activation 1 x 1 x 1120 

Fully Connected 1 x 1 x 560 

ReLU Activation 1 x 1 x 560 

Softmax Activation 1 x 1 x 280 

Output 1 x 1 x 40 

Deep Learning
In contrast to the traditional approach deep learning 

does not require any preceding feature engineering or 
model building.

Data classification is performed by a multi-layer convo-
lutional neural network well suited to classify time series 
data. Consecutive time sequences of sensor data (X, Y) 
are injected into the input layer. The input layer is fol-
lowed by 3 convolution layers (CONV). Each layer ex-
tracts characteristic data features by moving small-sized 
two-dimensional filter arrays across the data arrays of the 
preceding layer all the while performing a convolution 
calculation providing corresponding feature maps. Apply-
ing a rectified linear activation function (ReLU) provides 
contrast enhancement of the data and pooling of adjacent 
neurons halves the size of the resulting data arrays but 
retains the most important information. The output of the 
last CONV layer is passed and flattened through 3 subse-
quent fully connected layers (FC) connecting every neu-
ron of the previous layer to every neuron of the next. The 
FC layers provide binary classification. ReLU activation 
is subsequently applied one more time. Furthermore, the 
array size is reduced step-by-step. Finally, the output of 
the last FC layer is transformed into a probability distribu-
tion by applying a special activation function (Softmax) 
delivering the output predictions.

During the training phase a sufficiently-sized set of 
training data are used to train the convolutional neural 
network. The prediction quality is verified with verifica-
tion data sets. 

IMPLEMENTATION DETAILS
Both the implemented traditional machine learning and 

the deep learning algorithm are part of the Web2cHMI 
library [1]. Web2cHMI is a Web-based native user inter-
face implementation for accelerator operations and 
maintenance applications in the context of the 
Web2cToolkit Web service collection. Web2cHMI pro-
vides gesture recognition and speech recognition capabil-
ity. It is entirely coded in JavaScript capable of being 
processed locally by a standard Web-browser and does 
not rely on any server-side logic.

Algorithms
The k-nearest neighbour classification algorithm used 

in the traditional machine learning approach searches the 
20 nearest data points (k = 20).

The convolutional neural network capability is based 
on the ConvNetJS JavaScript library [2]. Table 1 summa-
rizes the parameters of the network layers.

Both the traditional machine learning and the deep 
learning algorithm are capable of distinguishing between 
32 linear and 8 circular movements: Diagonal: Upward/Downward – Right/Left –

Long/Short – Slow/Fast Horizontal: Right/Left – Long/Short – Slow/Fast Vertical: Upward/Downward – Long/Short –
Slow/Fast Circular: Clockwise/Counterclockwise  – Long/Short

– Slow/Fast

Table 2: Movement Parameters 

Parameter Value 

sstart (long signal) -0.8

send (long signal) 0.8

sstart (short signal) -0.6

send (short signal) 0.6

tstart (fast signal) 0.35 * npoints

tend (fast signal) 0.65 * npoints 

tstart (slow signal) 0.2 * npoints 

tend (slow signal) 0.8 * npoints 

Data Sets
The analysis discussed in this paper is based on gener-

ated data sets. Each set contains all sorts of horizontal, 
vertical, diagonal and circular finger, hand or arm move-
ments according to Eq. (1) parameterized by tstart, tend, sstart 
and send (Fig. 1). Each movement is a 1s long time 
series of data points at intervals of 3 ms and consists of 
333 data points (npoints). The data points are normalized 
ranging from -1.0 to 1.0. The characteristic parameters of 
the simulated movement are summarized in Table 2. 
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Duration (tend – tstart) and length (send – sstart) of each ges-
ture type are randomly (tjitter, sjitter) distributed values 
around a given mean value as given in Table 2. In addi-
tion, random noise (fnoise) is added to each individual 
function value. Besides data sets for training and verifica-
tion, test data sets with different jitter and noise values 
have been generated for comparison purposes. The pa-
rameters of the generated test data sets are summarized in 
Table 3. 

Table 3: Data Sets 

Data Set Type tjitter sjitter fnoise 

Training / Verification 5% 5% 10% 

Test 0 (Reference set) 5% 5% 10% 

Test 1 (fnoise fixed) 2.5% 2.5% 10% 

Test 2 (fnoise fixed) 7.5% 7.5% 10% 

Test 3 (tjitter, sjitter fixed) 5% 5% 5% 

Test 4 (tjitter, sjitter fixed) 5% 5% 15% 

TRAINING AND VERIFICATION
Due to the inherent complexity of the deep learning al-

gorithm a training step of the convolutional neural net-
work requires considerably more time to be performed as 
in the case of the traditional machine learning algorithm.

To explore the training progress of both machine learn-
ing algorithms training has been performed with different 
numbers of training steps (ntraining) and the prediction 
quality of the classification algorithms after training has 
been measured using 100 verification data sets. 

The achieved training quality is summarized in Table 4. 
It lists the mean prediction probability and the best and 

worst individual prediction probability out of the 40 ges-
ture types to be distinguished. 

In all cases the deep learning approach performs better 
than the traditional machine learning algorithm.

Table 4: Training Quality 

ntraining Algo-

rithm 

Mean Min Max 

500 
TML 0.936±0.017 0.50 1.00 

CNN 0.997±0.002 0.93 1.00 

1000 
TML 0.945±0.015 0.58 1.00 

CNN 1.000±0.000 1.00 1.00 

1500 
TML 0.949±0.015 0.61 1.00 

CNN 1.000±0.000 0.99 1.00 

PREDICTION
Individual gestures are never identical. In order to ex-

plore the prediction power for similar but slightly differ-
ently performed gestures, two series of tests have been 
executed: Varying the jitter of the duration and length of the

simulated gesture but keeping the noise floor of the

position sensor data constant (fnoise = 10%), Varying the noise floor of the simulated position

sensor data but keeping the jitter of the duration and

length of the gesture constant (tjitter = 5%, sjitter = 5%).

As reference, the training and verification data set type 
has been used. Both types (TML, CNN) of algorithms 
have been trained through 1000 training steps. Each indi-
vidual test includes 100 test steps. Table 5 summarizes the 
test results. 

Figure 3: Prediction quality (see Table 5) as function of the jitter of the duration and length of the simulated gesture. 

The noise floor of the simulated position sensor data is kept constant. 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA011

User Interfaces, User Perspective, and User Experience(UX)
MOPHA011

217

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 4: Prediction quality (see Table 5) as function of the noise floor of the simulated position sensor data. The jitter 

of the duration and length of the simulated gesture is kept constant. 

Table 5: Prediction Quality 

Test Algorithm Mean Min Max 

Test 0 
TML 0.945±0.015 0.58 1.00 

CNN 1.000±0.000 1.00 1.00 

Test 1 
TML 0.959±0.015 0.53 1.00 

CNN 1.000±0.000 1.0 1.0 

Test 2 
TML 0.928±0.017 0.49 1.0 

CNN 0.980±0.005 0.86 1.0 

Test 3 
TML 0.971±0.007 0.86 1.0 

CNN 1.000±0.000 0.99 1.0 

Test 4 
TML 0.849±0.037 0.15 1.0 

CNN 1.000±0.000 0.98 1.0 

Compared to the traditional machine learning approach 
the deep learning algorithm is less sensitive to deviations 
from the standard movement data set (reference data set 
Test 0) used for training and provides in all tested cases a 
higher prediction quality (Fig. 3). In particular, the predic-
tion power of the traditional machine learning algorithm 
degrades rapidly with increasing noise floor (Fig. 4). 

CONCLUSIONS
The obvious advantage of the traditional machine learn-

ing approach is the short period which is needed to train a 
model. However, proper feature engineering has to be 
performed prior to the training and real time prediction 
phase. A too simple or insufficiently engineered model 
may result in a minor prediction quality and the algorithm 
may only accurately work if the data to be analysed do 
not differ too much from the data used for training. This 

deficit may be overcome by user-specific, individually 
trained models.

Similarly, the obvious disadvantage of the deep learn-
ing approach is its slow training behaviour. However, if 
the neural network is finally trained, the algorithm seems 
to be more robust with respect to deviations from the data 
sets used for training which makes individual training 
unnecessary. Feature engineering is not required. As a 
consequence the features of the gestures remain largely 
hidden. Finally, the deep learning approach provides a 
higher prediction quality compared to the traditional ma-
chine learning approach.
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