
pyAT, Pytac AND pythonSoftIoc:
A PURE PYTHON VIRTUAL ACCELERATOR

W. Rogers∗, T. J. R. Nicholls, A. A. Wilson, Diamond Light Source, Oxfordshire, UK

Abstract
Virtual accelerators are used for testing control system

software against realistic accelerator simulations. Previous
virtual accelerators for synchrotron light sources have used
Tracy and Elegant as the simulator, but without Python bind-
ings for accelerator simulations it has been difficult to create
a virtual accelerator using Python. With the development
of Python Accelerator Toolbox (pyAT), that is now possi-
ble. This paper describes the combination of pyAT, Python
Toolkit for Accelerator Controls (Pytac) and pythonSoftIoc
to create an EPICS-based virtual accelerator for Diamond
Light Source.

MOTIVATION
High-level control system software is designed to interact

with the control system that is connected to the real hardware.
Testing this software can be inconvenient for two main rea-
sons: during design and commissioning the hardware might
not yet exist, and during its operational lifetime the hardware
is in use most of the time.

A virtual accelerator is an application that allows testing
a control system by providing the same interface as a subset
of the control system that is required for the operation of
high-level applications. Although it is possible to provide
dummy values for different control system parameters, it
is much more useful to combine those parameters with a
simulation so that they respond in a physically accurate way
to any changes. The software under test then requires no
changes in order to run against a virtual accelerator.

Python has a number of advantages for developing a vir-
tual accelerator: it is free and open source, is very widely
used in both science and industry, has many useful third-
party libraries available, is simple to start using and is capa-
ble of building large applications that scale well.

To build this virtual accelerator we needed a number of
components:

• a simulation code for synchrotron light sources that can
be called from Python

• a Python framework that understands the elements of a
particle accelerator

• the ability to convert between engineering units (used
in the control system) and physics units (used in simu-
lation codes)

• a server that can hook the Python code into the control
system

The following sections describe these components.
∗ will.rogers@diamond.ac.uk

pyAT
Accelerator Toolbox (AT) [1] is a simulation code for

synchrotron light sources developed for use in Matlab. Its
numerical engine is based around ’integrators’ that calculate
the effect of a particle in 6D phase s pace. For efficiency
purposes these integrators were written in C and compiled
for use in Matlab.

This design allowed for the same integrators to be com-
piled for use in Python code. pyAT uses the same numerical
engine as AT, with Python classes and functions written to
derive accelerator parameters from the engine. It uses the
libraries NumPy and SciPy for several numerical utilities.
Previous virtual accelerators for synchrotron light sources
have used Tracy [2] [3] and Elegant [4] [5] as the simulator,
but these were missing Python bindings.

pyAT provides a number of features. Lattice and element
types are defined and may be loaded and saved to different
file formats. It performs particle tracking and allows calcu-
lation of transfer matrices and closed orbit with radiation
included or excluded. Other derived parameters that are cal-
culated include linear optics, radiation integrals and detail
of the beam envelope. It includes a plotting package that
uses Matplotlib to provide various plotting functions.

Testing has shown pyAT to give exactly the same numeri-
cal results as AT with a speed comparable to other accelera-
tor simulations [6].

Pytac
Python Toolkit for Accelerator Controls (Pytac) is a

Python library designed to enable working with the differ-
ent parts of accelerators. Each element in an accelerator is
represented by an object that may have one or more ’fields’
corresponding to physical parameters. The ability to address
the different elements of an accelerator by position in the
accelerator and element family is often useful in high-level
applications and Python scripts.

>>> bpm1 = lattice.get_elements('BPM')[0]
>>> bpm1.fields()[pytac.LIVE]
['enabled', 'x', 'y']
>>> bpm1.get_value('x', data_source=pytac.LIVE)
-2.1e-5

Pytac allows requesting the live values of the parameters
from the accelerator control system. It also allows efficiently
requesting the values for an entire family.

>>> lattice.get_element_values('BPM', 'x')
[-4.6e-05, 8.2e-05, 7e-05, ...]

Many of the ideas in Pytac were inspired by a similar
application Matlab Middle Layer (MML) [7].

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA017

MOPHA017
232

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Unit Conversion
It is often useful to use the same accelerator parameter

in different unit systems: the units used by physicists for
calculations, and the units used by the control system for
control and monitoring. Pytac has a built-in unit conversion
mechanism that allows requesting and setting parameters in
either of these unit systems. The following example requests
a quadrupole setting in engineering units (𝐴) and physics
units (𝑇𝑚−1):
>>> quad.get_value('b1', units=pytac.ENG)
103.18108367919922
>>> quad.get_value('b1', units=pytac.PHYS)
-1.0192934647760261

Two unit conversion mechanisms are currently available:
polynomial (often used for linear conversions) and piecewise
cubic hermite interpolating polynomial (PCHIP), an algo-
rithm provided by SciPy [8] that allows smoothed interpola-
tion between arbitrary measured data points. Implementing
further unit conversion mechanisms is simple.

Configuration
The accelerator definition is stored in a number of CSV

files. These are easy to edit and are efficiently stored in
the Git version control system. The configurations for the
Diamond accelerators are exported using a Matlab script
from the existing configurations that are set up in MML.

ATIP
Accelerator Toolbox Interface for Pytac (ATIP) is the

adapter that makes pyAT available as a simulator for Pytac.
Once loaded, pyAT provides an online model for interactive
use in Pytac.
>>> lattice.set_default_data_source(pytac.SIM)
>>> lattice.get_element_values('BPM', 'x')
[0.0, 0.0, 0.0, ...]
>>> h_corr = lattice.get_elements('HSTR')[0]
>>> h_corr.set_value('x_kick', 0.1, units=pytac.ENG)
>>> lattice.get_element_values('BPM', 'x')
[0.24630504031808942, 0.12495575893699563,
-0.1257213016476168, ...]

ATIP has a simple asynchronous threading mechanism.
Any changes that would require a recalculation using pyAT
are placed on a queue. A dedicated simulation thread loops
continuously, checking whether there are any items in the
queue. If so, it empties the queue, applies each change to its
model and recalculates. When a request for data is received,
ATIP will check whether an update is pending and if so will
wait until the recalculation is complete before returning that
data.

An outline of how ATIP integrates pyAT into Pytac is
shown in Fig. 1.

pythonSoftIoc
At Diamond Light Source we use the EPICS distributed

control system, with many servers known as IOCs that pro-
vide some subset of the control system parameters (process

Figure 1: How ATIP integrates into Pytac.

variables, or PVs). Many IOCs are embedded devices that
interact directly with hardware, but often it is useful to make
standalone IOCs that may not represent hardware devices at
all; these are called soft IOCs. pythonSoftIoc [9] is a Python
library that allows creating an EPICS IOC using only Python
code. The virtual accelerator uses this library to create an
IOC using the PV names used on the Diamond accelerator,
then respond appropriately to any interactions.

A PURE PYTHON VIRTUAL
ACCELERATOR

Using the tools above, it is now possible to assemble a
virtual accelerator using only Python. The definition of the
accelerator is provided by Pytac, the accelerator simulation
is provided by pyAT, and the EPICS IOC is provided by
pythonSoftIoc: see Fig. 2.

Figure 2: How high-level applications may use either the
control system (left) or the virtual accelerator (right) inter-
changeably.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA017

Software Technology Evolution
MOPHA017

233

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

This virtual accelerator is now being used to test the fol-
lowing high-level applications at Diamond.

High-Level Applications
Slow Orbit Feedback The slow orbit feedback system

is well simulated using the virtual accelerator. The beam
position is simulated and returned via the BPM elements;
the feedback system calculates a correction to be applied
to the corrector magnets over EPICS and the simulation is
updated once the correction has been applied. The 1 Hz rate
of the slow feedback system can be handled by the virtual
accelerator.

RF Feedback The orbit feedback systems correct the
beam orbit so that the BPM readings are zero. However,
there are multiple solutions to this, some of which may have
forced the electrons to a different energy than designed. The
RF feedback system determines whether the net effect of the
corrector magnets includes such a change; if so, it changes
the RF frequency to remove it. The slow orbit feedback and
RF feedback systems work together, and can both be tested
against the virtual accelerator.

Tune Feedback Diamond’s tune feedback system [10]
uses a subset of the quadrupoles to correct variations in the
tunes. A response matrix dictates how the tunes change
when the quadrupole settings change; this matrix is inverted
to determine the quadrupole changes required to correct a
deviation in the vertical and horizontal tunes.

Vertical Emittance Feedback Diamond runs a vertical
emittance feedback system [10] that keeps the beam size
broadly constant. Since pyAT provides the emittance value
for the ring using the Ohmi Envelope formalism, it is possible
to use the virtual accelerator to test the vertical emittance
feedback system.

BURT The Back Up and Restore Tool (BURT) is used
at Diamond to save and restore machine configuration in the
form of stored values for specific PVs. We have used the
virtual accelerator to test BURT functionality as we develop
a new version of Burt in Python. Burt may also be used to
save different configurations of the virtual accelerator.

Challenges
There are a number of details of the high level applications

that make using the virtual accelerator challenging.

Speed of calculation and update rates A fundamental
limitation of this design of virtual accelerator is the elapsed
time taken in order to recalculate machine parameters. These
simulations are typically run on desktop machines.

The simulation used for the virtual accelerator has the
two parts summarised in Table 1. This gives an approximate
update rate of 1 Hz, sufficient for most of the high-level
applications.

The one example for which this caused problems was the
vertical emittance feedback system. The PV that provides
the vertical emittance value updates at about 5 Hz, and the
feedback system reports slower updates as a failure. As
Python is inherently single-threaded it is impossible to up-
date a PV on the virtual accelerator while the recalculation
is taking place; in any case, unless there are valid new values
to report more frequent updates may cause feedback systems
to misbehave.

The vertical emittance feedback system can be tested
against the virtual accelerator if the update check is dis-
abled; whether this check is useful in the application itself
is being considered.

Table 1: Virtual Accelerator Simulation Functions Executed
on a Typical Desktop PC

Function Description Runtime

linopt() Derive linear optics 0.25 s
ohmi_envelope() Calculate emittance 0.65 s

Control system complexities Sometimes the EPICS
Control System is more complicated than the simple view
presented by a virtual accelerator.

One example at Diamond is the way that the quadrupoles
are controlled, which uses a number of PVs to aggregate
contributions to the magnet setpoint from different sources,
one of which is the tune feedback system [10]. In this case
it was possible to test the tune feedback system by providing
’mirror’ PVs that respond in the same way to the original
setpoint PVs; in other cases simple transforms can be applied
to the PV value.

Certain PVs at Diamond are available as individual PVs
per element but are also available for convenience as a wave-
form PV: for example, there are two waveform PVs contain-
ing all 173 BPM values in the horizontal and vertical planes.
The natural way for the virtual accelerator to provide this in-
formation is per-element, but applications are more likely to
use the waveforms. To solve this we added a configuration
mechanism to aggregate individual values into addtional
waveform PVs.

These transformations are handled by classes in ATIP,
and it would be possible to make other transformations by
writing similar classes.

NOTES ON SOFTWARE
All of the components described above are open source

and the source code is available on Github. pyAT, Pytac and
ATIP are available on the Python Package Index (PyPI) [11]
for simple installation using pip. Any interest in using or
collaborating on these projects would be welcomed.

Jupyter notebooks are a good way of demonstrating the
capabilities of these applications. Some example notebooks
exist in the Git repositories, and further examples are being
developed.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA017

MOPHA017
234

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Python versions 2.7 and 3.5+ are supported, although
Python 2 support will be deprecated in the near future in
line with the approach of the rest of the Python community.

FURTHER WORK
The components described above begin to form a versatile

toolkit for accelerator physics and control system applica-
tions using Python.

The next application in this toolkit is Visualiser and Opti-
miser for Linear Optics (Volo), which uses ATIP and pyAT
to allow interactive lattice viewing and editing via a PyQt
GUI. Most of the capability for this tool exists in the compo-
nents described above, meaning that the Volo project mostly
requires using these components and constructing an intu-
itive user interace. A prototype of this application is under
development; a screenshot of an early version is shown in
Fig. 3.

Figure 3: A screenshot from an early version of Volo.

REFERENCES
[1] A. Terebilo, ”Accelerator Toolbox for MATLAB”, SLAC-

PUB-8732, 2001.

[2] M. Boge, “Update on TRACY-2 Documentation”, SLS Inter-
nal Note, SLS-TME-TA-1999-0002 (1999).

[3] M. T. Heron et al., “The Diamond Light Source Control
System”, in Proc. EPAC’06, Edinburgh, UK, Jun. 2006, paper
THPCH113, pp. 3068–3070.

[4] M. Borland, ”elegant: A Flexible SDDS-Compliant Code for
Accelerator Simulation,” Advanced Photon Source LS-287,
September 2000. doi:10.2172/761286

[5] P. P. Goryl, A. I. Wawrzyniak, M. Sjöström, and T. Szymocha,
“An Implementation of the Virtual Accelerator in the Tango
Control System”, in Proc. ICAP’12, Rostock-Warnemunde,
Germany, Aug. 2012, paper MOSBC3, pp. 23–25.

[6] W. A. H. Rogers, N. Carmignani, L. Farvacque, and B. Nash,
“pyAT: A Python Build of Accelerator Toolbox”, in Proc.
IPAC’17, Copenhagen, Denmark, May 2017, pp. 3855–3857.
doi:10.18429/JACoW-IPAC2017-THPAB060

[7] G. J. Portmann, W. J. Corbett, and A. Terebilo, “An Ac-
celerator Control Middle Layer Using Matlab”, in Proc.
PAC’05, Knoxville, TN, USA, May 2005, paper FPAT077,
pp. 4009–4011.

[8] SciPy documentation for PCHIP,
https://docs.scipy.org/doc/scipy-0.18.1/
reference/generated/scipy.interpolate.
PchipInterpolator.html

[9] pythonSoftIOC on Github,
https://github.com/Araneidae/pythonIoc

[10] M. T. Heron et al., “Feed-forward and Feedback Schemes
applied to the Diamond Light Source Storage Ring”, in Proc.
IPAC’14, Dresden, Germany, Jun. 2014, pp. 1757–1759. doi:
10.18429/JACoW-IPAC2014-TUPRI081

[11] PyPI, https://pypi.python.org/pypi

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA017

Software Technology Evolution
MOPHA017

235

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

