
DEVELOPMENT OF ETHERNET BASED REAL-TIME APPLICATIONS IN
LINUX USING DPDK

G. Gaio†, G. Scalamera, Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy

Abstract
In the last decade Ethernet has become the most popu-

lar way to interface hardware devices and instruments to
the control system. Lower cost per connection, reuse of
existing network infrastructures, very high data rates,
good noise rejection over long cables and finally an easier
maintainability of the software in the long term are the
main reasons of its success. In addition, the need of low
latency systems of the High Frequency Trading communi-
ty has boosted the development of new strategies, such as
CPU isolation, to run real-time applications in plain Linux
with a determinism of the order of microseconds. DPDK
(Data Plane Development Kit), an open source software
solution mainly sponsored by Intel, addresses the request
of high determinism over Ethernet by bypassing the net-
work stack of Linux and providing a more friendly
framework to develop tasks which are even able to satu-
rate a 100 Gbit/s connection. Benchmarks regarding the
real-time performance and preliminary results of employ-
ing DPDK in the acquisition of beam position monitors
for the fast orbit feedback of the Elettra storage ring will
be presented.

INTRODUCTION
For today’s control systems Ethernet is an attractive op-

tion that can compete with and often overtake field-bus
technologies. Setting up an Ethernet infrastructure is
generally easier and less expensive than other communi-
cation networks. In the particle accelerator field, suppliers
of devices or systems are replacing the conventional inter-
faces (direct I/O, serial lines, GPIB, etc.) with Ethernet
links, especially in high performing instrumentation.

In time-sensitive applications such as feedback systems
and, more recently, performance optimization applications
using machine learning, it is fundamental to process syn-
chronous data in real-time because their effectiveness
scale linearly with the repetition rate. For this reason
interfacing Ethernet based devices to the control system
in the most efficient way is becoming even more im-
portant than in the past.

Real-time Networking
Since 2005 the new front-end computers installed in

Elettra and later in FERMI run the GNU/Linux operating
system. The kernel versions span from 2.4.25 running on
the oldest PowerPC VME boards to the less older 3.14.58
installed on rack-mount servers.

Until the release of RT_PREEMPT on the mainline
(2.6.23), the vanilla Linux kernel was unreliable predict-
ing the execution of a task.

Even today, the network stack is unsuitable for devel-
oping time sensitive network applications [1]. The POSIX
socket operations (system calls), which transfer control
from the application layer to the kernel have significant
overheads (e.g. context switch and CPU cache pollution).
Moreover in the last fifteen years the network perfor-
mance has grown faster than the one of the CPUs due the
stagnation in the single thread performance. Interrupt
moderation techniques try to mitigate the CPU load
caused by high-end network interface cards (NIC) but at
the cost of increasing the latency.

In order to overcome these limitations, for the FERMI
and Elettra front-end computers involved in time critical
applications we adopted RTAI and more recently Xeno-
mai, which enable systems to perform real-time tasks.
Since the majority of these applications exchange data
through Ethernet, the drivers of the on-board NICs were
modified to execute the interrupt handler in the
RTAI/Xenomai domain and run arbitrary code bypassing
the Linux network stack [2].

The downsides of this approach are the development
time for patching Ethernet device drivers at every kernel
upgrade over different architectures and the complexity of
debugging real-time applications that usually run in ker-
nel space. For these reason in the last years we have car-
ried out a campaign to evaluate the real-time capabilities
over Ethernet of the latest Linux kernel running in multi-
socket servers.

LINUX TUNING
Thanks to the evolution of the Linux kernel, nowadays

a system can be easily configured to prioritize low latency
over throughput [3]. The most common customizations to
perform are:

BIOS
• Enable turbo mode to allow the CPU to reach its

maximum clock frequency.
• Disable CPU lower state to avoid the CPU turning to

deeper sleep states.
• Disable hyper-threading because the logic cores that

share resource with other logic cores can introduce
latency.

• Disable virtualization and monitor options because
they introduce latency in memory access.

Linux
• Remove a given CPU core from the general kernel

Symmetric multiprocessor system (SMP) balancing
and scheduler algorithm (isolcpu), pin the critical task
to the reserved CPU core. __

† giulio.gaio@elettra.eu

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA044

Software Technology Evolution
MOPHA044

297

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

• Inhibit the kernel from sending scheduling-clock in-
terrupt to isolated CPU cores (nohz_full)

• Enable HugePages; larger but fewer pages are need-
ed. This reduces the number of Translation
 Lookaside Buffers (TLBs, high speed translation
caches) and consequently the time to translate a vir-
tual page address to a physical page address.

• Disable Linux CPU governor which defines the CPU
power-saving policies.

Network
• Set the SMP IRQ affinity to match the PCIe routing

between CPU sockets and NICs
• Configure the interrupt moderation policy to achieve

the lowest latency in acquiring packets from the NIC

Bypassing Linux
Bypassing the Linux network stack and retrieve data

from the network board in polling mode has become a
common practice. Some software solutions are provided
directly by vendors (VMA by Mellanox, OpenLoad by
SolarFlare/Xilinx) or by the open source community. The
most popular are NetMap, PF_Ring ZC and DPDK [4].

DPDK, initially developed by Intel in 2010, is support-
ed directly by the Linux Foundation and sponsored by
market leaders as ARM, Red Hat, AT&T and Ericsson. It
is free of charge and supports many vendor cards with a
maximum speed of 200 Gbit/s. A large community with
many subprojects, an established roadmap, frequent meet-
ings and the presence of the industry, assures a high level
of reliability and support in the long term.

DPDK
DPDK is a framework providing Linux with a complete

set of functions for receiving, sending and processing
Ethernet packets and for assigning memory and CPU
resources to real-time applications.

In order to reach the maximum performance in terms of
latency and throughput, the user has to assign to DPDK a
pool of NICs and CPU cores which become unavailable
to the Linux kernel. A special driver maps the NIC PCIe
addresses into user space memory so that the process of
network card initialization and data processing is per-
formed in a more friendly environment.

The DPDK application, which runs in user-space (see
Fig. 1), is usually executed in two steps. The first config-
ures the Environment Abstraction Layer (EAL), which is
responsible for gaining access to low-level resources such
as hardware (CPU cores and NIC ports) and memory
space. In the second part the user code spins on a dedicat-
ed core waiting for incoming packets. Once the packets
are available, data processing and retransmission can be
managed by the same core or executed on other reserved
cores. Lockless ring buffers and inter-process communi-
cation libraries assure efficient and consistent data trans-
mission between processes running on different CPU
cores.

Performance tests are regularly performed by the
DPDK team with high-end Intel and Mellanox NICs and
the results are publicly available [5]. These documents
report the maximum attainable line rate in different con-
figurations but no information is given on latency or jitter
performance.

Figure 1: DPDK bypass scheme.

At the Elettra synchrotron light source the most jitter-
sensitive real-time application based on Ethernet is the
fast orbit feedback [6], a system that corrects the electron
beam orbit at 10 KHz using 96 Beam Position Monitors
(BPM) and 164 corrector magnets. In order to test DPDK
in a real application, the fast orbit feedback network lay-
out has been modified to duplicate the data stream coming
out of BPM electronics and forward it to a single rack-
mount server. The goal of the test was to validate the
mainline Linux kernel together with the DPDK platform
as a possible alternative to the present feedback architec-
ture.

Revamping the Fast Orbit Feedback System
The fast orbit feedback is presently composed by

twelve VME computers interconnected in a ring topology
by means of a reflective memory system using fibre op-
tics. Each of the VME CPUs is connected through a local
1GbE switch to eight Libera Electron BPM detectors [7]
sending beam position measurements at 10 kHz rate.
Each computer performs one twelfth of the whole calcula-
tions consisting in matrix products and digital filtering (1
PID + 8 notch filters centred on some harmonics of the 50
Hz up to 600Hz). The corrections are applied to 164 cor-
rector magnet power converters by means of analog links
driven by DAC cards installed on each computer.

A process for replacing the exiting power converters
and BPM detectors have started a few years ago. In order

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA044

MOPHA044
298

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

to recover spare parts before the full upgrade of the stor-
age ring [8], some prototypes of the new devices with
Ethernet interface (10 GbE for the BPM electronics, 1
GbE for the power converters) will be installed in the
existing storage ring.

As the present feedback infrastructure is partially un-
suitable to host the new devices, an upgrade of the feed-
back architecture is ongoing using the new technology
based on DPDK.

Test Setup
The twelve original 1GbE local switches have been re-

placed by four more powerful devices (Extreme X440 G2,
48 port 1GbE + 4 10GbE ports). Every switch is config-
ured to connect the BPMs of three of the twelve storage
ring sectors partitioning data in three VLANs.

The traffic of the VLANs is mirrored to one 10GbE
port and sent through fibre optic cable in the main server
room. An Intel dual socket server (Xeon E5 2637, 3.5
GHz, dual CPU socket, four cores per socket, 16Gbyte
RAM, Ubuntu 18.04, Kernel 4.15.0, DPDK 18.02) is
connected to the fibre cables by means of four 10GbE
ports (Intel X710). The first two 10GbE ports are paired
to CPU 1, the other two to CPU 2.

Every 100.2 μs (feedback repetition period) ninety-six
FPGAs inside the BPM detectors fire synchronously one
UDP packet of 80 bytes that is routed to the server. There
is no other load on the switches so the jitter added by the
network is assumed to be very low.

The difference between the feedback repetition period
and the measured time between the arrival of two consec-
utive bunches of 24 packets (belonging to one fourth of
the BPMs) on a single 10GbE port is a realistic estimation
of the jitter per cycle of the system (see Fig.2).

Figure 2: Jitter estimation.

A test program which performs the statistics using a
POSIX socket connection or the DPDK layer is executed
in four scenarios. Seven of the eight cores are isolated
leaving to Linux only the core 0. Every test is run for 100
seconds. In the last two tests core 0 is overloaded with
the utility “stress”, which imposes a configurable amount
of CPU, memory, I/O, and disk stress on the system.

• Test 1: single process running on core 0 connected to
one 10GbE port through a socket, no load on core 0
Linux.

• Test 2: single process running on core 2 connected to
one 10GbE port through a socket, no load on core 0
Linux.

• Test 3: single process running on core 2 connected to
one 10GbE port through a socket, maximum load on
core 0 Linux.

• Test 4: four processes running on four isolated cores
(2, 3, 5, 6) connected to four reserved 10GbE ports
through DPDK, maximum load on core 0 Linux (see
Fig. 3).

Figure 3: Block diagram of the DPDK test setup in the
global orbit feedback system.

Results
The test results are summarized in Table 1. In more

than 1 % of the cycles the POSIX socket connection
missed the deadline of 100 μs.

In Test 1 the maximum elapsed time between two con-
secutive bunches is 7.5 ms with lost packets.

In Test 2 the maximum elapsed time between two con-
secutive bunches of packets is 0.8 ms with no packet lost.

In Test 3 the results are affected by the load added by
the program “stress” on core 0 reserved to Linux. The
maximum elapsed time between two packets is 12.1 ms.

Table 1: Jitter Distribution with Socket Connection
Jitter Test1 Test2 Test3
< 10 μs 95.1% 91.6% 88.7%
< 50 μs 0.27% 4.8% 6%
< 100 μs 3.2% 2.74% 4.4%
< 200 μs 1.37% 0.81% 0.8%
< 1000 μs 0.0045% 0.0003% 0.04%
> 1000 μs 0.001% 0 0.028%
Lost packet 0.058% 0 0

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA044

Software Technology Evolution
MOPHA044

299

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

In Test 4 the maximum elapsed time between two
bunches of packets is below 40 μs in all cores (see Table
2). The processes on core 2 and 3 are affected by more
jitter with respect to core 5 and 6. The cache pollution
done by “stress” on core 0 (cores 0, 1, 2 and 3 are on the
same CPU socket) is the most probable cause.

Table 2: Jitter Distribution with DPDK
Jitter Core 2 Core 3 Core 5 Core 6
< 1 μs 0 0 0 0
< 2 μs 99.91% 99.88% 99.98% 99.98%
< 3 μs 0.046% 0.05% 0.015% 0.013%
< 4 μs 0 0% 0 0
< 5 μs 0.032% 0.0598% 0.0018% 0.0023%
< 10 μs 0.026% 0.0038% 0.0004% 0.0006%
< 20 μs 0 0 0 0
< 30 μs 0 0.0006% 0.0002% 0.0002%
< 40 μs 0.006% 0 0 0
> 40 μs 0 0 0 0

CONCLUSIONS
Nowadays hard real-time performance over Ethernet in

Linux can be achieved easier than in the past. The devel-
opment time for bypassing the Linux network stack is no
more worth thanks to a number of available production-
quality vendor-neutral software platforms. The first tests
of employing DPDK for an alternative fast orbit feedback
architecture at Elettra is promising. The next step will be

the integration into DPDK of the code for the feedback
calculations performed with AVX-512 instructions.

REFERENCES
[1] T. Høiland-Jørgensen et al., “The eXpress data path: fast

programmable packet processing in the operating system
kernel”, in Proc. CoNEXT '18, Heraklion, Greece, Dec.
2018, pp. 54-66. doi: 10.1145/3281411.3281443

[2] L. Pivetta, G. Gaio, R. Passuello, and G. Scalamera, “The
FERMI@Elettra Distributed Real-time Framework”, in
Proc. ICALEPCS'11, Grenoble, France, Oct. 2011, paper
THDAUST03, pp. 1267-1270.

[3] Low Latency Performance Tuning for Red Hat Enterprise
Linux 7,
https://access.redhat.com/sites/default/files
/attachments/201501-perf-brief-low-latency-
tuning-rhel7-v1.1.pdf

[4] S. Gallenmüller et al., “Comparison of frameworks for high-
performance packet IO”, in Proc. ACM/IEEE 2015, Oak-
land, CA, USA, 2015.
doi:10.18429 10.1109/ANCS.2015.7110118

[5] NIC’s Performance Report with DPDK,
http://fast.dpdk.org/doc/perf

[6] M. Lonza, D. Bulfone, R. De Monte, V. Forchi, and G. Gaio,
“Status of the ELETTRA Global Orbit Feedback Project”, in
Proc. EPAC'06, Edinburgh, UK, Jun. 2006, paper
THPCH091, pp. 3003-3005.

[7] Instrumentation Technologies, http://i-tech.si
[8] E. Karantzoulis, A. Carniel, R. De Monte, S. Krecic, and C.

P. Pasotti, “Status of Elettra and Future Upgrades”, in Proc.
IPAC'18, Vancouver, Canada, Apr.-May 2018, pp. 4054-
4056. doi:10.18429/JACoW-IPAC2018-THPMF010

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA044

MOPHA044
300

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

