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Abstract
The Collider-Accelerator Department (C-AD) at

Brookhaven National Laboratory (BNL) operates a
world-class particle accelerator – the Relativistic Heavy Ion
Collider (RHIC). To ensure its safe and proper operations,
C-AD develops its own control systems. It is a large
distributed complex system consisting of approximately 1.5
million control points [1]. The system has two physical
layers: the front end level and the console level. In work [2],
a new simulation structure is proposed which aims to
improve the console level codes reliability. The structure
enables developers to conveniently do customized testing on
ADO1 codes, specifically ADOs using the General Purpose
Interface Bus (GPIB) interface [3]. In this work, a new
simulation framework is proposed. It extends the simulation
structure in [2] by accommodating new types of ADOs that
use the Ethernet connections. Together, they form a more
comprehensive simulation environment which enhances the
overall controls software dependability.

INTRODUCTION
The Relativistic Heavy Ion Collider (RHIC) at

Brookhaven National Laboratory (BNL) is a world-class
particle accelerator, which helps scientists to study what the
university may have looked like in the first few moments
after its creation. RHIC contains two 3.8 kilometers
counter-rotating super-conducting rings to carry particle
beams which can be collided in 6 crossing regions to
provide possible interactions for experimenters to study.

The RHIC is operated by elaborate control systems at the
Collider-Accelerator Department (C-AD) of BNL. Instances
of the C-AD control systems are also applied in the Linear
Accelerator (LINAC), Electron Beam Ion Source (EBIS),
Tandem Van de Graff pre-accelerators, the Booster accel-
erator, and the Alternating Gradient Synchrotron (AGS).
C-AD control systems provide operational interfaces to the
accelerator complex. Its architecture is hierarchical and con-
sists of two physical layers with network connections: the
Front End Computers (FECs) level and the Console Level
Computers (CLCs) level, as shown in Fig. 1. The front end
level contains more than 500 FECs, each of which running
on the VxWorksTM real-time operating system. Every FEC
consists of a VME chassis with a single-board computer2,
network connection, and I/O modules [4]. The console level
∗ Work supported by Brookhaven Science Associates, LLC under Contract

No. DE-SC0012704 with the U.S. Department of Energy.
† ygao@bnl.gov
1 ADO stands for Accelerator Device Object, see details below.
2 They can have different processor architectures, e. g. POWER3E,

MV2100, MV3100, XILINX, etc.

Figure 1: RHIC system hardware architecture.

is the upper layer of the control system hierarchy, which con-
sists of operator consoles, physicist workstations and server
processors that provide shared files, database and general
computing resources.

There are several fundamental system components in the
C-AD control systems.

Accelerator Device Object (ADO) It abstracts features
from the underlying devices into a collection of control
points (also known as parameters), and provide those param-
eters to the users of the control systems. ADO designers
determine the number and names of parameters based on
the needs of the system. ADO parameters can be viewed or
edited by the Parameter Editing Tool (PET). ADOs provide
the set() and get() methods as the controls interface to the ac-
celerator devices. The accelerator complex is controlled by
users or applications which set() and get() parameter values
in instances of the ADO classes. A special preprocessor is
used to help to convert ADO “.rad” files3 into C++ files [5].
It takes care of the necessary details, and allows the ADO
designers to focus on the more important parts: the ADO
functionalities.

Controls Name Server (CNS) It is a centralized repos-
itory where unique name/value pairs can be efficiently man-
aged and queried. Given an object’s instance name4, the
CNS will provide enough information so that the associated
data can be accessed. The CNS is session oriented which
means several copies of it can be run at the same time as
long as each of them has its own host. This feature allows
developer to have a “private” CNS, which makes it possible
to signal a process to look for an ADO instance in a dif-
ferent place from where it normally resides. The proposed

3 It stands for RHIC ADO Definition file.
4 That object can be an ADO parameter, a Complex Logical Device (CLD),

a manager’s parameter name, or an alias (a name used by developers
which is more human-readable), etc.
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simulation framework leverages this property to redirect ap-
plications to interact with simulated ADOs instead of real
ADOs.

Logging System The logging system in the C-AD con-
trol systems is used to save machine parameters and device
values to provide a history of accelerator’s performance and
data to be analyzed for machine physics studies [4]. Logging
requests are initiated by files that define what device param-
eters to be logged and the method of logging. Data can be
logged upon demand or periodically. In the early years, data
were logged by demand using the General Purpose Monitor
(Gpm), hence also called Gpm logging. The data logged
in this way are usually array data, so they occupy a large
amount of storage space. The second logging method came
later, which aggregates and updates information periodically.
This type of logging method is called pool logging. Users
can get their interested information from the pool logging
data without the need of making individual logging requests,
hence it reduces the access frequency of FECs. The pool
logging data are typically stored in scalar format and hence
enabling more data to be archived. For comparison of the
two logging methods, 14% of items (such as ADO param-
eters, etc.) are saved by Gpm logging occupying 85% of
data volume, while the rest of 86% items are saved by pool
logging occupying only 15% of data volume [6]. Several
applications can be used to view, edit and process logging
data, such as Gpm, LogView, etc.

Motivation
In work [2], a simulation architecture was proposed to

improve ADO codes reliability. The framework focuses
on testing ADOs with the General Purpose Interface Bus
(GPIB) [3] connections to devices. It consists of several func-
tion blocks, and has a switch mechanism which enables users
to conveniently turn on and off the simulation mode without
changing the ADO codes. In the simulation mode, each
ADO parameter can be tested using three different sources
of data, i. e. random data, file data or log data. Moreover, it
contains a special module which automates a particular kind
of testing on ADO codes. Testing results are summarized
and presented to users for codes analysis.

In this work, a new simulation framework is proposed
which covers a different type of ADOs that use the Ethernet
connections (including5 DIGI interface [7]) to devices. The
simulation framework adopts a totally different structure.
Specifically, it is based on a powerful networking engine
called Twisted, which is an event-driven network program-
ming framework developed by the Twisted Matrix Labs [8].
The simulation framework can handle multiple types of de-
vices at the same time.

Together with the simulation structure in [2], they form
a more comprehensive simulation environment which cov-
ers a large amount of ADOs frequently used by developers.

5 Since eventually DIGI devices also need to communicate with hardware
devices through Ethernet.

Figure 2: The overall simulation framework consists of two
independent parts.

Figure 3: The structure of the simServer.

Figure 2 summarizes the two parts of the new simulation
environment.

This work concentrates on the second part. Key use cases
in the control system are summarized. The next development
phase is discussed.

RELATED WORK
There is another simulation structure in the C-AD control

systems called simServer [9]. In this section, we briefly re-
view this simulation work, and compare it with the proposed
simulation structure.

simServer
The simServer is a simulation structure that is proposed

in the controls system to simulate data for ADO parameters.
The structure of the simServer is shown in Fig. 3.

It uses some special features of CNS and “adogen” to
allow users to set ADO parameter (including measurement
parameters) values. As introduced above, when applications
(e. g. PET) need to communicate with an ADO, they first
search through CNS to find out where the ADO is running
and then make the connection. Moreover, users can create
a private copy of CNS, which is operated on users’ local
machines (so it will not affect the normal operation of the
system) and could contain different ADO information. By
doing that, users could direct applications to interact with dif-
ferent ADOs without making any change on the applications’
side.

“adogen” is the program to convert “.rad” files into C++
codes which are then compiled to generate ADOs. “ado-
gen” has a runtime switch “-dummy”, which generates a
special version of ADOs (dummy ADOs). Those dummy
ADOs have their “get()” and “set()” methods dummied-out,
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i. e. they simply return OK. This feature effectively makes
all ADO parameters simple memory containers. Users can
write data into dummy ADO parameters (including measure-
ment parameters), so that they can interact with applications
without actually connecting to any hardware.

The simServer is a place (a server or specifically, an ADO
manager) where it holds those dummy ADOs for applica-
tions to access. The simServer simulation structure is useful
in situations where a programmer wants to force some par-
ticular parameter values (which are not likely to appear in
the practical operation of the devices) for testing purposes.
For example, giving a voltage measurement of a magnet a
high value which exceeds its engineering limit.

The simServer can interact with applications through a
special version of ADOs (without the need of any hardware).
The building of a simServer is relatively simple and it works
for different types of ADOs (since all ADOs are dummy
ADOs in the simServer, their methods are dummied-out to
be simple memory containers). However, the simplicity of
omitting ADOs’ code details limits its testing capability. It
can only perform tests in the application level, since there is
no way for it to test the ADO codes itself (the ADO codes
are already modified to be dummy codes), which is more
important to the overall system reliability.

The simulation structure proposed in this work can test
both the ADO codes level and the application level. Users
can run their customized testing data with ADO codes un-
changed, and interact with the applications.

TWISTED FRAMEWORK
The simulation structure proposed in this work employs an

event-driven networking engine called Twisted from Twisted
Matrix Labs [8]. The Twisted framework is asynchronous,
therefore it is very efficient and scalable. This section briefly
introduces some important facts about the Twisted frame-
work.

Reactor Pattern
The Twisted framework uses a design pattern called reac-

tor pattern [10]. It works like a loop that waits for events to
happen and then reacts to them. For that reason, the “reactor”
loop is also known as an event loop.

The Twisted framework uses callback [11] to invoke user-
defined function codes. It is a fundamental aspect of asyn-
chronous programming with Twisted. Figure 4 shows how
the Twisted framework uses callback to invoke users’ codes.
From the figure, we can see that the users’ callback codes
are in the same thread as the Twisted reactor loop. Thus, at
anytime if the users’ codes are running, the Twisted loop has
to wait, and vice versa. The reactor loop resumes when the
callback returns.

The reactor is the most important abstraction in Twisted.
At the center of every program built with Twisted, there is al-
ways a reactor loop that making the whole thing go. In other
words, writing programs with Twisted means choosing the

Figure 4: Callback pattern in the Twisted framework.

reactor pattern, which means programming in the “reactive
style” using callbacks and cooperative multitasking.

Useful Concepts
The simulation structure in this work is essentially built as

a TCP server. It (instead of real hardware) interacts with the
ADOs (that using Ethernet connections) for testing purpose.
There are several useful concepts in the Twisted framework
that simplify building a TCP server greatly.

Transports A Twisted Transport represents a single
connection6 that can send and/or read bytes. The Trans-
port abstraction represents any such connection and handles
the details of asynchronous I/O automatically. It is usually
common to use the Transport implementations that Twisted
provides. This way, the Transport objects will be created
automatically whenever the reactor makes new connections.

Protocols As the name suggests, Twisted Protocol ob-
jects implement protocols (e. g. TCP, FTP, etc.). Strictly,
each instance of a Twisted Protocol object implements a
protocol for one specific connection. This makes Protocol
instances the natural place to store the accumulated data of
partially received messages (since the Twisted framework
is asynchronous, the data are received in arbitrary-sized
chunks). The way the Protocol instances decide what connec-
tions they are responsible for is through a callback method
which is called by the Twisted codes with a Transport in-
stance as the only argument. That Transport instance is the
connection the Protocol instance is going to use.

Twisted includes a large number of ready-built Protocol
implementations for various common protocols [12]. De-
pending on the demands, it is also common to implement
new Protocol classes.

Protocols Factories Each new connection needs its
own Protocol instance, and Twisted handles creating new
connections. Thus, it will be convenient to also let Twisted
make the appropriate Protocol “on demand” whenever a new
connection is made. That is the job of Protocols Factories.

As the name implies, Protocols Factories follow the Fac-
tory design pattern [13] and they work in a straightforward
6 The connection can be a TCP connection, I/O over UNIX pipes and UDP

sockets, etc.
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Figure 5: Architecture of the simulator using Ethernet con-
nections.

way. Twisted invokes a Protocols Factories method to create
a new Protocol instance for each new connection.

Next, we discuss in detail about the simulation architec-
ture.

SIMULATION STRUCTURE OVERVIEW
The simulator’s structure is shown in Fig. 5. It is im-

plemented using the Twisted framework and serves as a
simulation server, interacting with clients from the network.
The simulation server can handle requests from multiple
clients at the same time (clients are usually different types
of devices). Each client is served with a Protocol Factory
instance, which contains information about how to perform
tests for a particular type of device.

The simulation structure supports three testing modes
(and a default mode if the testing mode is unspecified), i. e.
log mode, random mode, and file mode. There are several
features about this simulator that are worth mentioning. First,
parameters from the same ADO can run different simulation
modes. For example, some parameters may use random
mode to test on different data points, while other parameters
from the same ADO may use file mode to run user-specific
testing data. Users can decide what simulation modes to be
used for which parameters depending on the testing purpose.
Second, for the log mode, the logged data are fetched from
the remote data servers [14]. Using data servers is an efficient
way to handle users’ requests for logged data. It reads the
data quickly and culls the returned data so that it sends the
user only the data that can reasonably be distinguished on
the display applications (e. g. LogView).

Moreover, users can specify a time delay value, which
will be added to the communications between the client and
the simulator. The granularity of the time delay can be in
second, millisecond, microsecond, or nanosecond7. Setting
parameter values is also supported in the simulation struc-

7 The time delay function is implemented using the “sleep” function of
the “time” module in Python. The accuracy of the function depends on
the underlying Operating System (OS)’s sleep accuracy. On Linux, the
granularity of the system clock can be around 1 ms. Using a real-time
system will further increase the accuracy of the “sleep” function.

ture, users can set ADOs’ parameters for testing purpose. All
of those functionalities will be illustrated with an example
below.

Simulation Protocols and Protocols Factory
Twisted provides a rich library of Protocol implementa-

tions for various kinds of demands. Since commands coming
from devices usually end with a delimiter (e. g. a newline
character “\n”, or a carriage return “\r”), “LineOnlyReceiver”
is adopted as the simulation’s Protocol [12], which only
receives lines. “ServerFactory” is an implementation of
Twisted Protocols Factories [15], which is adopted as the
simulation’s Protocol Factory (since the simulator is essen-
tially a TCP server).

Simulation Configuration File
Following the same principle as in [2], to generalize the

simulation structure to accommodate various types of de-
vices, a simulation configuration file is applied. Each type
of device has its own configuration file. The file is written in
standard XML format [16], and contains a list of information
about how to interact with a particular type of device using
user-customized testing data.

To better understand the kind of information a configura-
tion file maintains, consider the following example. There
is an ADO called “ampmotion” that is interacting with an
applied motion controller [17] through Ethernet.

The first part of the configuration file lists several indi-
vidual settings, such as the delimiter that ends the commands
sent from the device (e. g. a newline character “\n”), the de-
limiter that ends the responses from the simulator (device
uses it to detect messages received), and the time delay value
(can be 0).

The second part lists information about all the device
commands and the corresponding responses for each sim-
ulated ADO parameter. It has several sections. Take the
command “IP” for example8.

Section “CmdResp” lists hardware command elements.
Each element has the following information:

• The name of the hardware command (such as “IP”);
• The response format for this command (such as

“IP={}”);
• Number of parameters needed to form the response (“1”

for the example, since there is only one pair of “{}”
needs to be filled to form a response);

• Simulation mode (e. g. “randRangeInt”, which means
generating a random integer in a range);

• Simulation mode parameters (e. g. “15000; 20000”,
which sets the range of “randRangeInt” to be
(15000,20000)).

Section “Default” lists default responses for all the sim-
ulated parameters (“16500” for the example “IP”), which
will be used if the simulation mode is unspecified when the
simulation starts.

8 This command is used to query the immediate position of the controller.
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Section “Log” lists the information about how to get the
logged data for any parameter that uses log simulation mode.
It contains the directory of a log file, a start time and a stop
time to locate the part of the logged data that are interested,
and the ADO parameter name for the command (“positionM”
for the command “IP”). The logged data will be played re-
peatedly (in loops) from the start time to the stop time during
the entire simulation.

Section “File” lists the information about how to get test-
ing data from a file for parameters that use file simulation
mode. Information includes the directory of the file that con-
tains the testing data, a pair for each parameter consisting of
command name and an identifier (“IP;ip” for the example).
The identifier “ip” will be used in the simulation to locate
the testing data from the testing file.

The third part of the configuration file lists simulation
configurations for setting commands. It contains key-value
pairs for all the setting commands that will be used in the
simulation. The key is the command’s format used for setting
the ADO parameter, and the value is the command used for
getting the ADO parameter value. For the “IP” example,
the key-value pair is “FP{d}-IP”. “FP{d}” is the setting
command’s format, which means the command is composed
of “FP” plus an integer number. Later in the simulation, the
integer number will be used as the response to the query
command “IP”, and returned to the requester.

Simulation Procedure
The simulation procedure can be described as follows.
First, there is a server configuration file to be created,

which contains necessary information to start the simulation
server, such as the name of the host the server is running on,
the name of the data server, listening port numbers, and the
directories of the simulation configuration files.

The simulation server starts based on the information in
the server configuration file. Once it starts, a “simData” ab-
straction instance is created for each type of device. The
instance is created with a simulation configuration file as the
only argument. It includes the user-customized testing data
and appropriate methods to generate and organize responses
(in the right format that the device supports) based on the
testing data. In other words, the “simData” instance has the
necessary knowledge about how to interact with the underly-
ing device using the testing data. Then, a simulation Factory
instance is created by loading a “simData” instance. The
Factory instance generates new Protocols for new connec-
tions and serves as the bridge between the Protocol instance
and the simulation data. One Factory instance is responsible
for one type of device. The Protocol instance is dealing with
all the low level work. It is in charge of handling new connec-
tions, receiving commands from ADOs, getting responses
from Factory instances, sending responses back to clients,
and managing connection lost. One Protocol instance is
created for each new connection from the network. The
listening socket tells Twisted to monitor the network for new
connections on a specific port, and use the Factory to make
new Protocol instances for new connections.

Furthermore, users can use Twisted to create and run
the simulation server as a daemon process [18], so that the
simulation server can continue its services even the terminal
session is closed or the user logs out.

Simulation results can be verified through different ways.
Viewing the parameter values of the simulated ADOs is an
easy and efficient way. Standard controls systems tools such
as PET or LogView can be applied.

Key Use Cases
The main use cases of this simulation framework along

with the one in work [2] are summarized as follows:

• Improve ADO codes reliability;

• Replace hardware devices when they are not available;

• Test failure conditions without interrupting normal sys-
tems operations;

• Automated system and unit test of software;

• Validate the upgrade of software.

FUTURE WORK
Our focus thus far has been on defining the overall struc-

ture of an useful control system simulation environment
within the framework of the existing, real control system.
One of the future goals is to construct a version of the sys-
tem that can be completely self-contained. This would allow
working in an environment in which all aspects of the sys-
tem can be controlled, without impact on the actual running
control system.

Another interesting topic is the combination with machine
learning. A possible extension of the simulation architecture
is the construction of a special client that monitors both the
inputs and outputs of the simulated ADOs. Since the special
client has the complete information of both the data feeding
in and the data coming out, machine learning techniques
such as anomaly detection [19] can be applied with the spe-
cial client to further test the ADO codes reliability. We
imagine this special client to become the main user interface
developers could use to construct and perform testing suites
and even develop regression testing groups.
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