
EPICS SUPPORT MODULE FOR
EFFICIENT UDP COMMUNICATION WITH FPGAS∗

M. Konrad† , E. Bernal, M. Davis
Facility for Rare Isotope Beams, East Lansing, USA

Abstract
The driver linac of the Facility for Rare Isotope Beams

(FRIB) contains 332 cavities which are controlled by indi-
vidual FPGA-based low-level RF controllers. Due to limited
hardware resources the EPICS IOCs cannot be embedded
in the low-level RF controllers but are running on virtual
machines communicating with the devices over Ethernet.
An EPICS support module communicating with the devices
over UDP has been developed based on the Asyn library.
It supports efficient read and write access for both scalar
and array data as well as commands for triggering actions
on the device. Device-related parameters like register ad-
dresses and data types are configurable in the EPICS record
database making the support module independent of hard-
ware and application. This also allows engineers to keep
up with evolving firmware without recompiling the support
library. The implementation of the support module lever-
ages modern C++ features and relies on timers for periodic
communication, timeouts, and detection of communication
problems. This allows the communication code to be tested
separately from the timers to keep the run time of the unit
tests short.

INTRODUCTION
FRIB [1] is a project under cooperative agreement be-

tween the US Department of Energy and Michigan State
University (MSU). It is under construction on the campus
of MSU and will be a new national user facility for nuclear
physics. Its driver accelerator is designed to accelerate all
stable ions to energies >200 MeV/u with beam power on
the target up to 400 kW [2]. Commissioning of the second
linac segment is currently underway and the accelerator is
planned to support routine user operations in 2022 [3].

The FRIB linac requires about 350 low-level RF con-
trollers [4] to actively stabilize the RF field in the accel-
erating cavities as well as roughly 55 machine protection
nodes [5] preventing damage to the machine by turning off
the beam within 35 𝜇s in case of a fault. The EPICS sup-
port module described by this publication acts as a driver
enabling the EPICS Input/Output Controller (IOC) to com-
municate with these devices.

HARDWARE
Both the LLRF controllers as well as the MPS hardware

have been developed in-house and use a low-cost pizza-box
design based on a Spartan 6 FPGA. A MicroBlaze soft-core
∗ Work supported by the U.S. Department of Energy Office of Science

under Cooperative Agreement DE-SC0000661
† konrad@frib.msu.edu

processor [6] implemented in the FPGA allows these devices
to be controlled remotely. Since this processor does not pro-
vide sufficient resources for running an embedded EPICS
IOC, the IOC needs to run on a remote machine instead.
A simple C program running directly on the soft-core pro-
cessor initializes the hardware and handles communication
over Ethernet. Due to the lack of an IP stack, the devices’
capabilities for handling network communication are limited
to UDP (TCP is not supported).

UDP PROTOCOL
The UDP communication protocol specifies that an IOC

initiates communication with a device by sending a request
packet. The device generally responds with one or more
UDP packets. The following commands are supported:

• Read registers
• Write registers
• Read waveform
• Read a block from persistent memory
• Erase a block from persistent memory
• Write a block to persistent memory
• Request write access
The commands for reading and writing registers can trans-

fer multiple consecutive registers at the same time to increase
efficiency. Three memory regions are defined for reading
and writing registers. They correspond to read-only memory
(e. g. for reading out sensor data), read/write memory (e. g.
reading/writing set-points) and to “write-once” memory, re-
spectively. The latter address range is used to implement
commands which trigger some action on the device (like
“start ramp”).

The read waveform command transfers an array from the
device to the IOC. These arrays can be very large and need
to be broken into many UDP packets.

The commands for accessing the persistent memory are
acting on a block of memory. They allow flash memories
or EEPROMs to be read/modified remotely. The block size
usually depends on the capabilities of the memory chip used.
The driver automatically selects the most efficient block size
if the device supports a range of block sizes.

DESIGN CONSIDERATIONS
The Asyn support module [7] is leveraged to implement

the functionality for asynchronously reading/writing regis-
ters and for providing the device-support layer. However,
some aspects like transfer of large waveforms or firmware in
parallel to other communication are not supported by Asyn
and thus are implemented by other means in the driver.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA075

MOPHA075
388

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems



Table 1: Supported Data Types for Scalar Data Transfer

Asyn Data Type Size (bit) Signedness

asynParamInt32 32 signed
asynParamUInt32Digital 32 unsigned
asynParamFloat64 16.16 N/A

The driver relies on the asynOctetSyncIO facilities pro-
vided by Asyn to perform network communication. This
makes the driver code independent of the underlying operat-
ing system.

Dynamic Driver Configuration
The firmware of the low-level RF controllers is improved

continuously resulting in registers being added or modified
frequently. This also requires the IOC to be flexible. To ac-
complish that, register names or other information about the
meaning of registers for low-level RF or MPS applications
is not compiled into the driver. Instead, this information
is dynamically read from the INP/OUT field of the corre-
sponding EPICS record during IOC start. After evaluating
the Asyn-specific part of these fields, Asyn passes the re-
maining part to the drvUserCreate function of the support
module which extracts the register address and the data type
from the string. This information is then used to create the
parameter with Asyn Port Driver. This approach also makes
the support module device agnostic, allowing it to be used
with both the low-level RF controllers as well as with the
MPS nodes.

DATA TRANSFER

The driver supports the data types listed in Table 1
for both scalar and waveform data transfer. While the
asynParamInt32 and asynParamUInt32Digital data
types can be mapped directly to the VAL/RVAL field of the
corresponding EPICS records, the driver also supports con-
version of fixed point values with a scaling factor of 2−16

(16 bit integer part, 16 bit fractional part). These values are
represented as double-precision (64 bit) floating point num-
bers in ai/ao records.

Register Transfer
Data is read from the device periodically (by default at a

rate of 10 Hz). The IOC automatically determines the mem-
ory range which needs to be read out based on the lowest
and highest register address used in each address range. The
required address range is generally transferred in one packet
to improve efficiency. Write operations to registers on the
other hand are performed immediately writing one register
at a time. This ensures write packets are sent with mini-
mum latency and in the order the data was submitted to the
corresponding EPICS records.

Waveform Transfer
Array data can be read from the device by sending a single

request. The device responds by transmitting the array chunk
by chunk. If a chunk is lost, a timeout expires and the driver
requests the missing part again until all blocks have been
received. The assembled array is then passed to Asyn which
updates the corresponding record.

Devices can support a command for freezing circular
buffers. This can be implemented in the IOC database as
a chain of records that freeze, read and unfreeze the buffer
(see Fig. 1).

A separate read-out mode geared towards streaming ap-
plications is currently under development.

Freeze Buffer

bo

Read Buffer Unfreeze Buffer

FLNKFLNK

waveform bo

Figure 1: Chain of records that freeze, transfer and unfreeze
a circular buffer.

Firmware Update
Users can update firmware by sending a firmware image

through Channel Access to a waveform physical variable
(PV). The driver will incrementally write the data to the con-
troller ensuring that other communication with the device
is not blocked while the firmware image is programmed. In
each step a block of flash memory is erased and programmed.
Once the waveform data has been written completely, the
driver signals success to Asyn, which completes the asyn-
chronous processing of the record.

Read back of the firmware image is triggered automati-
cally (see Fig. 2). An aSub record calculates the SHA-1 hash
value of the read back waveform. This value is available as
an array of 40 characters. Additionally, the first 39 bytes of
the array are also available as an EPICS string (by default
EPICS strings are limited to 39 bytes plus one byte for the
null termination). EPICS strings are simpler to display on
user interfaces and are generally better suited for archiving
than arrays. Archiving the hash value is an effective way
of keeping a record of firmware updates. Access security
on the firmware update PVs ensures only expert users can
program firmware.

Optional status records can be used to monitor progress
while reading or writing firmware (see Fig. 3). This is useful

Write Firmware

waveform

Read Firmware Calculate SHA1

FLNKFLNK

waveform aSub

Figure 2: Mechanism for automatically reading back a
firmware image after writing it.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA075

Device Control and Integrating Diverse Systems
MOPHA075

389

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 3: User interface allowing engineers to update firmware. The SHA-1 hash is calculated from the read back image.

for providing feedback to users who are working with large
flash memories which might take multiple minutes to read
or write.

A Python application allows firmware upgrades from the
command line. Mass upgrades can be sped up by running
several instances of this Python script in parallel with a
tool like GNU Parallel [8], thereby enabling the upgrade of
several devices at once.

TIMER-BASED ARCHITECTURE
The support module uses timers to perform the following

operations:
• Periodic read-out of registers
• Writing to a register
• Incremental array transfer without blocking other com-

munication
• Detecting communication problems (timeouts)
• Keeping write access
All timers required for these operations are managed by

an instance of epicsTimerQueue. Each device has its own
timer queue resulting in one additional thread per device.
Timers used in the context of Asyn use separate timer queues.

epicsTimerQueue manages multiple timers with a sin-
gle thread. The timers are organized in a priority queue
ordered by their expiration time. The thread waits for the
first timer on the queue to expire before it calls the timer’s
expiration handler, removes the timer from the queue and
sleeps until the next timer expires. The fact that all timer-
driven operations related to a device are triggered by the
same thread guarantees that only one of them is performed
at a time making additional locking unnecessary.

TEST AUTOMATION
The described support module is intended to be used for

configuring the machine protection system. Thus malfunc-
tion might cause the machine protection system to be config-
ured incorrectly, potentially leading to severe damage to the
accelerator. To prevent this, the driver module needs to be
very reliable. Unit tests verify that the driver behaves as in-
tended. In particular, tests verify that the driver calls Asyn’s
asynOctetSyncIO facilities correctly when processing a

write request. This has been accomplished by injecting ei-
ther an asynOctetSyncIO object or a mock object into the
driver’s constructor. For normal operation the driver uses
the asyncOctetSyncIO object whereas the mock object is
used when running the unit tests. The mock object verifies
that the data passed to the object is correct thus ensuring
that the driver processes data correctly.

Compared to a conventional implementation, the timer-
based architecture of the driver helps to eliminate “sleep”
statements from the code base making it possible to eliminate
wait times when executing unit tests.

CONCLUSION
The described support module has been used successfully

at FRIB for almost two years in a production environment.
It supports efficient transfer of both scalar registers as well
as arrays over a UDP-based protocol. FRIB’s largest IOC
using this driver controls 168 low-lever RF controllers with
about 220 000 records.

The ability to add/modify registers without recompiling
the driver speeds up the test and release process and thus
facilitates agile development. Longer-running transactions
like reading out large waveforms or programming a new
firmware image are implemented using timers so they do not
block the remaining communication. Allowing firmware to
be upgraded through Channel Access enables FPGA engi-
neers to update firmware themselves. Along with the ability
to perform mass upgrades this reduces the time required to
deploy new firmware considerably.

Automated tests ensure that the driver is behaving as
intended making it suitable for use with FRIB’s machine-
protection system.

REFERENCES
[1] FRIB, http://www.frib.msu.edu

[2] J. Wei et al., “FRIB Accelerator: Design and Construction
Status”, in Proc. HIAT’15, Yokohama, Japan, Sep. 2015, paper
MOM1I02, pp. 6–10.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA075

MOPHA075
390

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems



Jun.–Jul. 2019. doi:10.18429/JACoW-SRF2019-MOFAA3 to
be published.

[4] S. Zhao et al., “The LLRF Control Design and Valida-
tion at FRIB”, in Proc.NAPAC’19, Lansing, MI, USA, Sep.
2019. doi:10.18429/JACoW-NAPAC2019-WEPLM03 to be
published.

[5] Z. Li et al., “Current Status and Prospects of FRIB Machine
Protection System”, in Proc. NAPAC’19, Lansing, MI, USA,
Sep. 2019. doi:10.18429/JACoW-NAPAC2019-TUPLM29 to
be published.

[6] Xilinx Inc., “MicroBlaze Soft Processor Core”,
https://www.xilinx.com/products/design-tools/
microblaze.html

[7] M. R. Kraimer, M. Rivers, and E. Norum, “EPICS Asyn-
chronous Driver Support”, in Proc. ICALEPCS’05, Geneva,
Switzerland, Oct. 2005, paper P3_074.

[8] O. Tange, “GNU Parallel – The Command-Line Power Tool”,
login: The USENIX Magazine, vol. 36(1), pp. 42–47, Feb.
2011. http://www.gnu.org/s/parallel

[3] J. Wei et al., “The FRIB SC-Linac - Installation and
Phased Commissioning”, in Proc. SRF’19, Dresden, Germany,

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA075

Device Control and Integrating Diverse Systems
MOPHA075

391

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


