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Abstract 
Modern power converters (power supplies) at CERN use 

proprietary controls hardware, which is integrated into the 
wider control system by software device servers developed 
specifically for the CERN environment, built using CERN 
libraries and communication protocols. There is a growing 
need to allow other laboratories to make use of power con-
verters that were originally developed for CERN and, con-
sequently, a desire to allow for their efficient integration 
into control systems used at those laboratories, which are 
generally based upon either of the EPICS and TANGO 
frameworks. 

This paper gives an overview of power converter equip-
ment and software currently being provided to other labor-
atories through CERN's Knowledge and Technology 
Transfer programme and describes differences identified 
between CERN's control system model and that of EPICS, 
which needed to be accounted for. A reference EPICS im-
plementation provided by CERN to other laboratories to 
facilitate integration of the CERN power converter controls 
is detailed and the prospects for the development of a 
TANGO equivalent in the future are also covered. 

THE CERN KNOWLEDGE 
TRANSFER PROGRAMME 

The Knowledge Transfer (KT) group at CERN aims to 
engage with experts in science, technology and industry in 
order to create opportunities for the transfer of CERN’s 
technology and know-how. The ultimate goal is to acceler-
ate innovation and maximise the global positive impact of 
CERN on society. This is done by promoting and transfer-
ring the technological and human capital developed at 
CERN. 

CERN POWER CONVERTERS 
Over the years, CERN has designed various families of 

power converters. The recent designs all work with the 
third-generation CERN-designed Function Generator/ 
Controller (FGC3) and five switched-mode 4-quadrant 
converter families and five fast-pulsed converter designs 
are now available under license [1]. The switched-mode 
converters range from the CUTE (±12.5 A ±15 V) to the 
SIRIUS (±450 A ±450 V peak, ±200 A ±80 V RMS), 
which can be combined in series or parallel combinations. 
The fast-pulsed converters range from 50 A to 3000 A with 
pulse durations of at least 5 ms and typical repetition rates 
of 1-2 Hz. The 320 A MaxiDisCap design can operate 
faster with support for pulse rates up to 10 Hz. 

FGC3.1 AND FGC3.2 
The current third-generation Function Generator/

Controller is FGC3.1 [2]. This small control computer 
was de-signed between 2007 and 2011 and went into 
operation in 2012. More than 2700 have been 
produced. It runs at 10 kHz and supports a current or 
field regulation period of 100 µs or multiples of 100 µs. 
This limits the regulator bandwidth for the rejection 
of perturbations to around 1 kHz.  

Component obsolescence makes further production of 
the FGC3.1 difficult and some applications need more 
bandwidth than can be provided with 10 kHz regulation, so 
the FGC3.2 development was started in 2018 for operation 
from 2022 [3]. The FGC3.2 will be plug-compatible with 
the FGC3.1, except for increased power consumption on 
the +5 V. This may require an upgrade of the PSU, depend-
ing on how many other cards are sharing the supply. 

If a lab or company wishes to license a CERN power 
converter design or use the FGC3 controls with an existing 
power converter, then FGC3.1s are available for small 
quantities that do not need more than 10 kHz bandwidth. 
For large quantities or high-performance applications, it 
will be necessary to wait for the FGC3.2 design to be ready. 

Firmware and FPGA Programming 
In both cases, CERN will provide the firmware, FPGA 

programming and support during integration and commis-
sioning as well as long-term updates as part of the license 
agreement. All the firmware and FPGA programming 
source code will be available for review, but CERN will 
not give permission to compile them locally nor to create 
derivative versions or distribute this code. CERN invites 
bug reports, bug fixes and feature requests from licensees.  

Despite the hardware reaching the end of its production 
life, the FGC3.1 programming will continue to be sup-
ported for at least 20 years. The FGC3.2 should be produc-
ible until at least 2027 and it will also be supported at 
CERN for at least 20 years. We anticipate future refreshes 
of the design after 2027 to replace obsolete components. 

The step from FGC3.1 to FGC3.2 includes a significant 
change in architecture. The older design is based on the 
combination of a Microcontroller Unit (MCU) + Digital 
Signal Processor (DSP) + Field Programmable Gate Array 
(FPGA), while the newer design will use a multicore 
ARM-based System-on-Chip (SoC) with an FPGA. The 
FGC3.1 was a “bare-metal” design with a tiny real-time 
micro-kernel on the MCU and no operating system on the 
DSP. With FGC3.2, the System-on-Chip (SoC) will run 
Linux with the PREEMPT_RT patch. 
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CONTROLS ELECTRONICS  
The second-generation FGC2 is used with analogue volt-

age sources in the LHC. The FGC supports the digital cur-
rent regulator in software with an analogue voltage refer-
ence emitted via a DAC. The FGC3 supports this mode of 
operation, however, it also has digital serial interfaces to 
work with digital voltage sources.  

CERN has developed a family of low-level power con-
verter control cards and crates that can cover a wide range 
of different topologies. Collectively, these are known as 
RegFGC3 cards and crates. At the heart of switched-mode 
designs is the VSREG_DSP board, which combines the 
TMS320C28346 DSP with a Spartan 3 FPGA. This DSP 
has nine high-resolution PWM generators, sufficient to 
drive four IGBT H-Bridges. It supports the voltage regula-
tor, filter damping and firing control in software. 

An analogue thyristor firing card is included in the cata-
logue of RegFGC3 cards. When this is used, the FGC3 im-
plements the voltage regulator and filter damping loop in 
software and the firing reference is emitted via the DAC. 

Other cards support state control, analogue and digital 
interlocks, fast-accelerator-interlocks, White Rabbit net-
working, external high-performance ADCs and other facil-
ities. 

RegFGC3 card and crate designs are available under li-
cense. The first KT agreement was signed with a European 
manufacturer in 2016. They successfully used the 
switched-mode controls crate and cards with their 20 kA 
80 V converter design for the TRIUMF main cyclotron 
magnet [4]. This was commissioned in March 2018. 

SOFTWARE SERVICES 
AND EXPERT TOOLS 

CERN has more than five thousand power converters 
across the accelerators, including 1750 in the LHC. Around 
four thousand are now controlled by FGCs, physical or vir-
tual, and this number continues to rise. Managing such a 
large park of equipment requires effective expert tools that 
scale to such large deployments. These are part of CERN’s 
FGC offer [5]. 

PowerSpy and FortLogs 
PowerSpy is an advanced web application that was de-

veloped at CERN since 2015. It allows power converter 
experts to acquire and analyse analogue and digital signals 
as well as tabular log data from FGCs and other sources. 
Common analysis features such as fast Fourier transforms 
and first-order time constant analysis are provided. A pub-
lic standalone version of the application is available for 
testing online [6]. 

FortLogs is a log acquisition database that is in develop-
ment for operation in 2020. Based on Postgres, it presents 
a RESTful API to allow applications to store, stream, tag, 
search and retrieve up to a million multi-megabyte acqui-
sitions. A Python library makes it easy for Python programs 
to use the FortLogs API. PowerSpy uses a Python back-end 
under Apache and it will use the library to save all acquisi-
tions in FortLogs as well as provide an elegant UI to search 

the contents. Automatic nightly clean-up will delete old ac-
quisitions that have not been pinned. PowerSpy, FortLogs 
and the Python library can be licensed independently and 
used as the acquisition and analysis tool for any data 
source. 

FortLogs provides the foundation for the FGC logging 
server, which automatically reads out log data from FGCs 
if their power converter trips. 

Terminal 
FGC3s have a USB port to connect a PC running a ter-

minal emulator. It is possible to connect to the same termi-
nal via the fieldbus using PowerSpy or a command-line 
tool. 

THE CERN CONTROLS MODEL 

 
Figure 1: The CERN controls model. 

Three-Tier Control System 
The CERN control system is based around what is 

known as the three-tier model, as shown in Fig. 1. The up-
per tier is typically an application running on a console in 
the control room. The lowest of the three tiers is a diskless 
front-end computer, which is physically connected to one 
or more pieces of hardware to be controlled, either directly 
or via a fieldbus. The lower tier is responsible for the inte-
gration of the hardware into the wider control system, of-
fering a controls interface, reporting alarms and driving the 
hardware in real time. Between the upper and lower tiers, 
there is a middle tier, which aggregates and manages the 
devices presented by the lower-tier front-ends. 

Communication between the three tiers is handled by 
standardised middleware. 

The Device / Property Model 
Physical or logical equipment in the CERN control sys-

tem is represented by what is known as the Device / Prop-
erty Model. Each piece of equipment is represented by a 
named device. Attributes of the device which either repre-
sent settings affecting the operation of the device or report 
data acquired by the device are known as properties. A cli-
ent may set, get or subscribe to those properties in order to 
modify or retrieve their values. 

Implementation 
Control-room applications (the upper tier) at CERN are 

mostly written in Java, although Python is rapidly growing 
in popularity. The middle tier, which provides business 
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logic, settings management and sequencing, is also imple-
mented in Java, with ActiveMQ middleware used between 
those two tiers for compatibility with the Java Message 
Service (JMS). 

Software on the lower tier consists of a combination of 
drivers for connected hardware and a real-time software 
device server, built using one of the FESA or FGCD frame-
works common at CERN. This software is implemented in 
C/C++. Communication with the lower tier uses ZeroMQ 
middleware to present the device / property interface. 

The FGC Lower Tier 

 
Figure 2: The FGC lower tier. 

In the case of the FGC power converter controls, the 
lower tier front-end computer is connected to an Ethernet-
based real-time fieldbus, known as FGC_Ether, to which 
up to 64 FGC power converter controllers may be con-
nected, as shown in Fig. 2. The computer runs software that 
communicates with the FGCs in real time using raw Ether-
net and acts as a gateway to the wider control system. 

THE EPICS CONTROLS MODEL 
The Experimental Physics and Industrial Control System 

(EPICS) is a set of tools and software components that can 
be adopted by developers to create and implement control 
systems. Its development began around 1991 and since 
then it has been adopted by many accelerator laboratories 
as well as other physics facilities. It provides a tool-based, 
distributed, event-driven architecture that can scale from 
small facilities to large laboratories. 

Like the CERN controls model, it consists of a 3-tier 
control system. Both 1st and 3rd layers are similar in the 
sense that they refer to client applications and front-ends 
(FGC_Ether gateway / FESA device server or IOC), re-
spectively. In contrast, the EPICS 2nd layer refers to the net-
work, connected through the Channel Access (CA) proto-
col, while at CERN it refers to physical application servers. 

The Channel Access Protocol 
Channel Access (CA) offers clients the possibility to get, 

put or monitor Process Variables (PVs), which are identi-
fied by a unique name across the entire network. These 
commands are equivalent to CERN’s get, set and subscribe 
commands. 

In addition, CA also provides a search command, which 
is used to find out which CA servers contain a set of PVs, 
by broadcasting the request to all CA servers. The servers 

containing the PVs will respond back. At CERN, this func-
tionality is instead provided by a central directory service 
which can be queried. 

Input / Output Controller 
An important module in the EPICS architecture is the 

Input / Output Controller (IOC). This module serves 
mainly as a CA server, although it can also be a CA client 
to other IOCs. 

As mentioned earlier, the IOC fills the 3rd layer in the 
EPICS control model, and can be connected to hardware or 
software interfaces. It is comparable in its functions to 
CERNs FGC gateway or FESA device server. 

In the next section we will describe our approach to ex-
posing FGC properties via an EPICS IOC. 

EPICS IMPLEMENTATION 
The IOC contains several components, following a mod-

ular design approach. 
One of the most important is the IOC database, where 

the records reside. The records themselves, depending 
upon their type, can contain different fields, and are able to 
perform operations on their data as well as access other rec-
ord values. Since they fill a similar role to CERNs proper-
ties, they are the logical choice for exposing them within 
an EPICS system. 

Three other important components are record support, 
device support and device drivers. Record support routines 
implement all record-specific behaviour, making it unnec-
essary for the database to have any record-type specific 
knowledge. In a similar way, device support modules im-
plement the logic required for interacting with a device, 
making it unnecessary for records to have any knowledge 
about the devices they are handling. Finally, device drivers 
can be developed to handle more complex hardware ac-
cess, if device support is not sufficient. 

Many custom tools have been developed to fit these lay-
ers. They abstract complex EPICS and CA concepts from 
the developer, letting them focus on the actual interaction 
with the devices. To integrate FGC property handling with 
EPICS, we decided to use two well-known device support 
development tools: asynDriver and StreamDevice. Both 
are widely known by the EPICS community and main-
tained by experienced EPICS developers. 

Figure 3: Merging of EPICS and FGC architectures. 
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Figure 3 shows how EPICS and FGC systems can be 
combined together. However, since both FGCs and IOCs 
take the role of databases in each of their systems, it is im-
portant to guarantee that the information in the IOC records 
is consistent with the information in each FGC property. In 
order to do so, the IOC records should only serve as a sim-
ple abstraction layer, and processing them should always 
trigger the reading or writing of the underlying FGC prop-
erties. Record processing is automatically triggered by CA 
puts and by hardware interrupts, so both put and monitor 
commands are guaranteed to act upon the real FGC prop-
erty value. However, getting a value from a record must be 
preceded by a processing order (i.e. using a CA put), oth-
erwise it will use the “cached” value in the record without 
a guarantee that it is the same as in the FGC.  

Command / Response Protocol 

Figure 4: Command / response protocol integration with 
EPICS. 

Figure 4 shows how the command / response protocol is 
implemented in EPICS for FGCs. For each FGC property 
that is exposed, there are usually two EPICS records: one 
for setting and the other for getting the value. Exceptions 
apply for properties which are only settable or gettable. 

Figure 5: Command/response protocol integration with 
EPICS. 

As illustrated in Fig. 5, StreamDevice is used to trans-
late an EPICS record put/get into an FGC command/re-
sponse protocol interaction. If the response for setting/get-

ting this new value is an error, then StreamDevice will rec-
ognize it as such and invalidate the corresponding record. 
This will give clients the necessary feedback of whether 
actions are successful. In addition, writing to a SET prop-
erty record will also trigger the reading of the respective 
GET property record, through a forward link field (FLNK). 
This will guarantee that the GET property record will stay 
consistent with the new value in the FGC. However, it is 
important to note that if other FGC clients are changing 
these properties actively, it will always be necessary to ex-
plicitly process the record before reading it. This also ap-
plies to properties that are only gettable. 

Since there are hundreds of FGC properties, we had to 
make use of record templates. On the StreamDevice level, 
basic protocol files were generated for handling string, in-
teger and float type properties. More types can be added if 
necessary. Then, on the record level, several record tem-
plates were designed – for setting and getting FGC proper-
ties of different types – that take advantage of the protocols 
previously mentioned. Finally, each record template can be 
used to instantiate any number of records, in order to cover 
all the exposed FGC properties, using instantiation files. 
These files are auto-generated, each covering the set of 
properties of one FGC class. These instantiation files 
should be imported in the IOC start-up script, for each of 
the FGCs connected to the IOC. 

FGC Published Status Decoding (UDP) 
Figure 6 shows the FGC status publication integration 

with EPICS. These messages are periodically unicasted by 
the FGC gateway to a set of pre-defined IP addresses (in 
this case the IOCs), where they must be received, decoded 
and used to update the corresponding records. Each mes-
sage consists of a single UDP datagram, containing enough 
slots of data for 65 devices (FGC Gateway + a maximum 
of 64 FGCs) in binary format. Each device may have a dif-
ferent set of properties encoded, depending upon its class. 

Figure 6: UDP status publication integrated with EPICS. 
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However, since this data is not self-describing, the IOC 
must know in advance how to decode the published prop-
erties of each device. 

The tool selected for this device support module was 
asynDriver. It provides a structured environment for devel-
oping support modules for hardware devices, taking care 
of most of the communication with other EPICS layers. 
The user only has to select which interfaces to make avail-
able and implement how they communicate with the de-
vice. These interfaces will affect how the records interact 
with the asynDriver parameters. 

We identified the types of properties exposed by the 
FGCs and matched them to asynDriver parameters and  
EPICS records, as shown in Table 1. 

Table 1: FGC Property and AsynDriver Parameter Types 
FGC pub-
lished prop-
erty type 

AsynDriver pa-
rameter type 

Record 
type 

Int (8, 16, 32 
bits) 

asynParamInt32 longin 

Float (32 bits) asynParamFloat64 ai 
Bitmask (8 or 
16 bits) 

asynPar-
amUInt32Digital 

bi (each bit 
separately) 

Enum (8 bits) asynPar-
amUInt32Digital 

mbbi 

 
Internally, asynDriver uses several auto-generated C++ 

classes, all sharing a common abstract interface. Each one 
is responsible for parsing the results of a different FGC 
class and exposing them as asynDriver parameters. 

When the fgcudp device support module is instantiated 
by the IOC startup script, it should be configured with the 
following information: 

• UDP port number to listen to. 
• Which gateways will be sending their publica-

tion data to that port, and the data ID (this allows 
the data from multiple gateways to be received in 
one port). It is also possible to set a reception 
timeout. 

• For each gateway, the existing FGC device num-
bers, names and classes. Internally, the device 
support module will instantiate the appropriate 
C++ class to handle each FGC. 

Accordingly, for each device, a set of records should be 
instantiated depending upon the FGC class. These are I/O-
triggered records, updated when the asynDriver receives a 
new value. They can also be set as invalid if the received 
data format is unknown, or if there is a timeout while wait-
ing for new UDP datagrams. 

As in the command / response protocol, there is a differ-
ent record instantiation file for each FGC class. These rec-
ords will interact with the parameters exposed by asyn-
Driver. Both C++ and record files are auto-generated sim-
ultaneously to ensure that they are consistent. 

THE TANGO CONTROLS MODEL 
TANGO is an object-oriented control system started as a 

collaboration between ESRF and SOLEIL laboratories. It 
uses a combination of CORBA and ZeroMQ for network 
communication. 

Several features are exposed per device, such as: device 
name, properties (persistent storage items), attributes (de-
vice data fields), commands (device actions), events and 
others. 

In order to provide the above features, TANGO devices 
may use different services provided by the framework. An 
important one is the TANGO database (MySQL) which is 
used as persistent storage for device properties and device 
names. 

Several tools are provided, such as Jive – a graphical tool 
for browsing and editing the TANGO database and  
ATKPanel – used to control any device. 

These modules, together with existing TANGO bindings 
to C++, Java and Python, make it simple to develop, test 
and release new device classes. 

TANGO IMPLEMENTATION 
This work is currently under development. It may not 

represent the final product. For this implementation, we de-
cided to use pyTango, which allows us to use several Py-
thon APIs developed at CERN, such as pyFGC. 

Each TANGO attribute will expose a single FGC prop-
erty. The attribute read/write methods make use of pyFGC 
to translate a write into a SET command and a read into a 
GET command. Then, the respective FGC responses will 
be parsed and used to update the attribute value or throw 
an exception in the case of an error. Alternatively, TANGO 
commands can be used to expose FGC write-only proper-
ties.  

In case of UDP status properties, a separate thread will 
use pyFGC to wait for new UDP packets. It will then parse 
them and update the respective attributes. 

Finally, naming data will be exposed as TANGO data-
base properties, which are loaded by each device. 

We will make use of Python metaclasses to generate each 
TANGO FGC class dynamically, based on a JSON file con-
taining a list of FGC properties. This will make it very sim-
ple to add or remove FGC properties, since only the JSON 
file will need to be modified. This task can even be done 
automatically, before the release of each new version. 

FUTURE PROSPECTS 
CERN power converter controls are now in use at three 

other labs via knowledge transfer agreements. The EPICS 
reference implementation for FGCs and ongoing develop-
ment of an equivalent for TANGO will ease their integra-
tion into control systems at a wider range of labs and sev-
eral organisations have expressed interest.  We look for-
ward to establishing new collaborations and to further de-
veloping our offering to benefit a wider scientific commu-
nity. 
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