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Abstract
Microphonics and Lorentz Force Detuning are common

sources of detuning in Superconducting Radio-Frequency
(SRF) cavities and continuous wave (CW) systems. Re-
quirements as tight as 10 Hz, are common in such systems
and are equivalent to change in cavity length of only a few
nanometers. Traditional approaches to mitigate detuning in
SRF cavities consist of mechanical modifications of the cav-
ity/cryomodule environment and advance control techniques
such as active compensation. In this research, we explore Ar-
tificial Intelligence (AI) techniques that can improve existing
control systems to ensure better performance and lower de-
tuning. Machine learning (ML), as part of AI, can learn the
complexity and non-linear behaviour of the system. Deep
Learning (DL), as one of the greatest algorithms in ML, can
scale and distribute well on the cores of high-performance
computers (HPC). This enables the controller to learn the
huge amount of data coming from diagnostic instrumenta-
tion. Furthermore, Gaussian Process (GP) can be used in
parallel with DL to increase the performance of ML. We de-
scribe such AI implementation on a computer model of the
RF control of an SRF cavity for LCLS-II. This model, called
Cryomodule-on-Chip (CMOC), was developed at LBNL. It
is our main goal to implement such AI-supported control for
the compensation of microphonics in LCLS-II SRF cavities.

INTRODUCTION
The quality of the electron beam affects the quality of the

X-rays produced in Free Electron Lasers. The amplitude and
phase of the electromagnetic fields in accelerating cavities
are controlled by the Low Level RF (LLRF) control system.
In particular, for the Linac Coherent Light Source upgrade
(LCLS-II), the LLRF must provide high stability of the phase
and amplitude to produce narrow-band hard X-rays [1].

In this contribution, we investigate the use of AI as a tool
to enhance the stability of the LLRF system. We utilize
CMOC, a software developed at LBNL, to model the differ-
ent noises present in the system; later on CMOC is also used
to model the LLRF. AI and ML have been previously used
in conjunction with control systems for numerous applica-
tions: We utilized formation flying control systems to keep
∗ The study at the University of New Mexico was supported by DOE
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two satellites in formation [2–4]. We also used different AI
frameworks to enhance the performance of the control [5–7],
similar approaches can be implemented for the control of par-
ticle accelerators and their sub-components, e.g. the LLRF.
We have previously explained the challenges of applying
these AI techniques to LLRF [8].

LCLS-II AND LLRF MODEL
LCLS-II is composed of 35 cryomodules, each with 8

SRF cavities used for staged acceleration of an electron
beam. The RF power driving each of these 280 accelerating
cavities is provided by Solid State Amplifiers (SSA) [9] and
controlled by the LLRF. The current LLRF framework is a
proportional and integral (PI) controller that is implemented
in an FPGA [10] and is sketched in Fig. 1.

Figure 1: Diagram of a PI Controller.

The chosen gains for this PI controller are 𝑘𝑝 = 1200
and 𝑘𝑖 = 3.8×107 [11]. These gains can further be tuned
dynamically with ML algorithms, according to the cavity
probe signal, forward power, reverse power, and other system
parameters, e.g. minimizing reflected power and losses. As
a result, the gain coefficients will take values from a set of
optimal parameters that minimize errors depending un the
particular state of the system.

Cavity Model
A model of the system encompassing the SRF cavity, the

LLRF, and the cryomodule was developed by the LLRF
team at LBNL and has been used to study the electrody-
namic performance of the system. For a cavity with several
electromagnetic modes, each mode can be represented by a
resonant circuit model, see Fig. 2.
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Figure 2: Circuit model of a resonant mode in a cavity.

The equations describing the electrodynamics of the sys-
tem [10] are:

𝑉 = 𝑆𝑒𝑗𝜃, (1)
𝑑𝜃
𝑑𝑡 = 𝑤𝑑, (2)

𝑑𝑆
𝑑𝑡 = −𝑤𝑓𝑆 + 𝑤𝑓𝑒−𝑗𝜃(2𝐾𝑔√𝑅𝑔 − 𝑅𝑏𝐼), (3)

The 𝑉 measures the energy stored in each mode, 𝑆 and 𝜃 rep-
resent the magnitude and phase of 𝑉, respectively, 𝑤𝑑 shows
the detuning frequency, 𝑤𝑓 shows the cavity bandwidth, 𝐾𝑔
represents the incident wave amplitude, 𝑅𝑔 is the coupling
impedance of the beam, and 𝐼 represents the beam current.

SIMULATIONS
CMOC code is used to simulate the cavity responses to the

control system and different measurement noises. Figure 3
represents the cavity field amplitude versus time when the
controller is not applied, and beam gets activated. Figure 4
represents the response of the control system when the feed
forward control is activated. It is clear how the control sys-
tem is able to keep the cavity field amplitude in the specified
limits. Figure 5 represents the cavity field amplitude when
there is detuning in the cavity, and still the response lies in the
limits with feed-forward control activated. Figure 6 shows
the response when measurement noise is applied. LLRF
amplifies higher noises and it will be send back to SSA. Fig-
ure 7 represents how measurement noise in the range of 130
to 260 dBc/Hz can lead to amplitude error [11]. Noise is
amplified with higher gains, and also higher noise lead to
higher errors in the control system. Later on, this and other
data will be passed through a ML algorithm to increase the
performance of the control system.

AI FOR IMPROVED CONTROL
The methods of AI can explore the underlying complexity

of a system, its behaviour, and later use that information to
tune the characteristics and the parameters of the system. In
this work, the complexity of the LLRF is the set of variables
in the whole control system, the parameters to be tuned are
the control parameters, and the control system should act
optimally. Particle accelerators and their sub-components

Figure 3: Beam loading noise without feed-forward.

Figure 4: Beam loading noise with feed-forward.

Figure 5: Detuning with feed-forward.

Figure 6: Measurement noise.

Figure 7: Signal error under different levels of measurement
noise and gain configurations.
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are complex systems with numerous variables and phenom-
ena happening at various time-scales. For the LLRF, the
variables in the control system defining its complexity are
the signal coming out of the cavity, the signals rate of change,
the detuning, error of the stability, the energy spent from
the RF source, PI controller parameters, and the controller
settling time. The optimal state of operation is imposed as
a constraint to the control system, ensuring the LLRF per-
formance increases with the help of AI. The AI algorithm
includes an optimization phase to produce the data and a ML
phase to map the space of data to the whole space working
environment. Figure 8 illustrates the AI approach we are
investigating.

Figure 8: Our artificial intelligence framework.

To embed the constraint of finding an optimal state on
the LLRF control system, an optimization algorithm finds
the best possible variables that minimize a loss function.
The loss functions are the RMS error and the energy spent
by the system. When the loss function is minimized, they
make a Pareto Front figure showing the relationship between
the error and energy. Pareto Front plots the objective func-
tions against each other. More energy can reduce the error
and vice versa. We showed this trend in [5–7]. The vari-
ables in the optimization algorithm are the parameters of
the controller. In this sense, for each value of the signal, the
optimization algorithm finds the optimal value of the con-
trollers parameters. In this phase, sufficient data needs to be
produced so that the ML algorithm can extend the optimal
state constraint into an arbitrary set of data. Figure 9 shows
how the data is produced with the optimization and control
system.

After sufficient data has been produced, the data is now
analysed. In this step it is useful to plot each parameter
against each other to see the distribution of the data. Differ-
ent metrics can then be implemented to test the data quality.
Interaction plot and histogram are used to measure the data
distribution. Next, the data size is reduced to decrease noise
and error, complexity and quantity. Principal Component
Analysis (PCA) and feature selection are used to reduce the

Figure 9: Data production through optimization and the
control system.

features of data, which leads to maximizing the informa-
tion coded in the data while reducing the computation time
during the training stage. Subsequent metrics can be im-
plemented to check for improvements on data quality with
each reduction. This process repeats itself until we reach a
satisfying point for the quality of data. Only then is the data
fed into the ML algorithms. Figure 10 shows how the data
is processed for the ML algorithms.

Figure 10: Data processing framework.

The input to the ML algorithm is the signal and error.
The ML mechanism branches in two: Gaussian Process and
Deep Learning, see Fig. 11. The first algorithm estimates
the energy with confidence interval to measure the uncer-
tainty of the estimation of the second algorithm. The second
algorithm estimates the parameters of the controller, which
are obtained through optimization in the AI algorithm for
training. The raw data in general does not have the required
format for either GP or DL and needs to be processed. Fig-
ure 12 represents the data processing for the DL in more
details.

The data information can then be shown to see how it
is distributed. Next, the non-valued data is removed. The
resulting data set can now be separated into testing and
training sub-sets. After that, the input and output to the DL
is assigned and we can look at statistical parameters, like
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Figure 11: Deep Learning and Gaussian Process learning.

Figure 12: Data process for the deep learning.

the mean and the standard derivation. The mean and the
standard deviation of the training set are in such a way as to
normalize the input to the DL; the DL output, however, is
not normalized. Figure 13 shows the algorithm used in the
DL framework. This will be implemented and processed on
High Performance Computer (HPC) resources.

Figure 13: Deep learning architecture.

The data enters the DL algorithm that minimizes the mean
square error (MSE) and mean absolute percentage error
(MAPE). The whole process runs on an HPC, using Tensor-
Flow to distribute the neurons on the multiple cores to be
used. Figure 14 represents the optimization loops used in
the deep learning algorithm.

Figure 14: Deep learning optimization algorithm.

The hyperparameters are introduced as variables in the
first loop of optimization for the deep learning. The opti-
mization algorithm is gradient descent in the second loop.
The chosen loss function, either MSE or MAPE, is mini-
mized in the first loop as well to find the optimal number of
layers and neurons for the deep learning architecture.

SUMMARY AND FUTURE WORK
The performance of the existing LLRF control system

for SRF cavities in LCLS-II, which is a PI controller, can
further benefit from AI algorithms. An AI algorithm can
be used to select the optimal values of the P and I gains
based on the working condition, characterised by live read-
outs coming out of the LLRF control system. In particular,
Gaussian Process and Deep Learning are two ML algorithms
that can learn the working condition of the LLRF and pre-
dict an optimal controller configuration for the LLRF. This
technology has the potential of compensating in real-time
for cavity detuning arising from microphonics and Lorentz
Force Detuning, yielding in turn a higher stable electron
beam and higher-quality X-rays. This is on-going work, we
will use HPC systems to perform the DL training of CMOC
simulated data and plan to test this AI-upgraded controller
into LCLS-II test cavities.

ACKNOWLEDGEMENTS
We are very thankful to our collegues from the LCLS-

II LLRF group: Larry Doolittle, Gang Huang and Carlos
Serrano from LBNL, Andrew Benwell and Alex Ratti from
SLAC. We are also thankful to Element Aero and Argonne
Leadership Computing Facility for facilitating computing
resources.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA114

Feedback Control and Process Tuning
MOPHA114

491

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



REFERENCES
[1] Performance and Functional requirements for the LCLS-II

Low Level RF System. LCLSII-2.7-FR-0371-R0

[2] A. Naseri et al., “Formation Flying of a Two-CubeSat Vir-
tual Telescope in a Highly Elliptical Orbit,” 2018 SpaceOps
Conference, 2018. doi:10.2514/6.2018-2633

[3] R. Pirayesh et al., “Attitude Control of a Two-CubeSat Virtual
Telescope in Highly Elliptical Orbits,” 2018 AIAA Guidance,
Navigation, and Control Conference, 2018. doi:10.2514/
6.2018-0866

[4] R. Pirayesh et al., Hybrid Attitude Control of a Two-CubeSat
Virtual Telescope in a Highly Elliptical Orbit,” 2017, presen-
tation only.

[5] R. Pirayesh, A. Naseri, F. Moreu, S. Stochaj, N. Shah, and J.
Krizmanic, “Attitude Control Optimization of a Two-CubeSat
Virtual Telescope in a Highly Elliptical Orbit,” in Space Op-
erations: Inspiring Humankind’s Future, pp. 233-258, 2019.
Springer, Cham. doi:10.1007/978-3-030-11536-4_11

[6] R. Pirayesh et al., “Deep learning and Gaussian process ap-
proach for optimal attitude control of a Two-CubeSat Virtual

Telescope,”, Small Satellite Conference SSC19, 2019, poster
SSC19-WP2-24.

[7] R. Pirayesh et al., “Attitude Control Optimization of a Virtual
Telescope for X-ray Observations,” Small Satellite Confer-
ence SSC18, 2018, p. SSC18-WKIV-05.

[8] J. A. Diaz Cruz, S. Biedron, M. Martinez-Ramon, S. I. Sosa
Guitron, and R. Pirayesh, “Studies in Applying Machine
Learning to Resonance Control in Superconducting RF Cavi-
ties”, in Proc. NAPAC’19, Lansing, MI, USA, Sep. 2019. doi:
10.18429/JACoW-NAC2019-WEPLM01 to be published.

[9] L. R. Doolittled et al., “LLRF Control of High QL Cavities for
the LCLS-II”, in Proc. IPAC’16, Busan, Korea, May 2016, pp.
2765–2767. doi:10.18429/JACoW-IPAC2016-WEPOR042

[10] LCLS-II System Simulations: Physics, LBNL LLRF Team,
Oct. 2015.

[11] C. Serrrano, L. Doolittle, and C. Rivetta, “Modeling & Sim-
ulations,” LCLS-II LLRF Review, Mar. 2016.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA114

MOPHA114
492

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Feedback Control and Process Tuning


