
CODE GENERATION TOOLS AND EDITOR FOR MEMORY MAPS

P. Plutecki∗, B. Bielawski, A. Butterworth

CERN, Geneva, Switzerland

Abstract

Cheburashka, a toolset created in the Radio Frequency
Group at CERN, has become an essential part of our hard-

ware and software developments. Due to changing require-

ments, this toolset has been recently rewritten in C++ and
Python. A hardware developer, using the graphical editor,
defines a memory map, which is subsequently used to ensure
consistency between software and hardware. The memory
map file is an input for a variety of tools used by the hard-

ware engineers, such as VHDL code generators. In addition
to aiding the firmware development, our tools generate C++
wrapper libraries. The wrapper provides a simple interface
on top of a Linux device driver to read and write registers by
exposing memory map nodes in a hierarchical way, perform-

ing all low-level bit manipulations and checks internally. To
interact with the hardware, a software that runs on a front-

end computer is needed. Cheburashka allows us to generate
FESA (Front-End Software Architecture) classes with parts
of the operational interface already present. This paper de-

scribes the evolution of the graphical editor and the Python
tools used for C++ code generation, along with a description
of their main features.

INTRODUCTION

Cheburashka [1], developed in Java, has been serving
both as an editor of XML memory maps and a code gener-

ation tool for FESA [2] (Front-End Software Architecture)
and the driver wrapper. For the VHDL code generation,
Gena, a tool written in Python, has been used. At some
point it has been decided to rewrite the code generators in
Python, with extensive use of templates. The file format of
the memory maps has been changed to YAML [3]
(YAML Ain’t Markup Language), also to work with a
new tool called Cheby [4], a VHDL generator developed
by the Hardware and Timing section, Controls group at
CERN, the successor of Gena. Despite YAML being more
human-readable than the original format (XML),
considering the complexity of memory maps for devices
which have been developed at the Radio Frequency group
and users’ habits, a new memory map editor was needed.

MEMORY MAP EDITOR

The new GUI (Graphical User Interface) has been devel-

oped to work with new file format (YAML) for memory
maps. Since many code generation tools written in Python
were already production ready, instead of having a mono-

lithic program for editing memory maps and generating code,
it has been decided to have the editor split into two parts:

∗ p.plutecki@cern.ch

• a generic C++ core, that, based on a schema file, can

work with a single document YAML file,

• a set of Python scripts that will provide features specific

for the memory map editor and possibility of running

external Python tools, such as code generators.

 To achieve this, a Python 3.6 interpreter has been
embedded in the editor, using pybind11 [5] library.

As it is not a trivial task to design an intuitive interface,
the GUI is composed of dockable widgets (see Fig. 1),
which can be freely rearranged by the user. These widgets
can be hidden, detached, tabbed and resized. All changes
done to the layout are saved in the user’s configuration
file, so they are persistent.

Core

The core of the editor has been written in modern C++,
using Qt5 [6] libraries. For parsing YAML files, yaml-cpp
[7] has been selected, as it is a C++11 library that supports
the latest YAML standard (1.2).

The editor needs a schema file, which defines the struc-

ture of a YAML file that is being edited. The schema, also
a YAML file, specifies allowed mappings and sequences.
Moreover it defines basic validation rules for scalars:

• if it is required,

• its type:

– boolean,

– integer,

– hexadecimal integer,

– floating-point,

– string,

– enumeration,

– file.

• regular expression pattern matching,

• its default value,

• in case of numerical types, a range (minimum and/or

maximum value).

 In most cases, these validation rules are sufficient,
although sometimes it is necessary to define more
sophisticated checks. For this, a validation function
written in Python can be bound to a scalar or a mapping.

In addition to the validation, auxiliary attributes can be
defined in the schema, such as a tooltip text, if a scalar can
be added, removed or edited by the user. The latter are

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA115

Device Control and Integrating Diverse Systems
MOPHA115

493

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 1: Main window of the memory map editor, with all widgets docked.

especially useful when some data need to be calculated at

runtime and presented to the user.

By default, when opening the application, the standard

schema is loaded, but the user can select a custom schema

file in the settings menu.

The GUI has standard features such as:

• a search menu, working also with regular expressions,

• an autosave functionality with configurable interval and

file rotation,

• an advanced undo/redo mechanism, which covers all

user actions.

The debugging process might be difficult, especially when

a developer can’t reproduce steps leading to an application

crash. As a precaution, breakpad [8], an open source library,

has been used as the crash dump generator, mainly because

of its availability on target platforms (Windows, Linux). If

the application crashes, a dump file is created, which later

can be used by the developer to see stack traces, combined

with source code references, that lead to the crash.

Using Gitlab’s CI/CD (Continuous Integra-

tion/Continuous Deployment/Delivery) mechanism,

the Continuous Deployment strategy has been put in place.

After the developer commits changes to the repository, the

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA115

MOPHA115
494

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

application is built for Windows and Linux and deployed to

CERN’s network file systems, becoming accessible to the

users. Symbol files, required to create references to source

files in stack traces, are automatically created and stored.

C++ and Python Bindings
The C++ core exposes the major part of its interface (also

partially Qt’s API) to the embedded Python interpreter, but

the bindings themselves are not sufficient for the editor to

work properly, as it has to react to changes in a memory

map made by the user. To solve this, a configuration file

needs to be provided. It allows to define hooks to a Python

module and function, that will be automatically called when

a defined event occurs. Currently, hooks can be defined to

such events as:

• an attribute has been inserted, modified, removed,

• a node has been inserted, moved, removed,

• a file has been loaded,

• a save or exit action has been requested,

• the opened file has been changed externally.

The configuration file also allows adding a custom button

or a menu entry inside the editor, which, when clicked, will

trigger a defined Python function. If a function needs user in-

put, for instance to run an external tool with specific options,

a list of arguments with their data types can be configured

as well. For every defined argument, a dialog will pop up,

with a default value from the previous call.

By default, the embedded interpreter adds the binary path

to its search path (PYTHONPATH), but often it is necessary

to specify additional ones. Platform dependent paths can

be defined in the configuration file and, during runtime, the

user can set alternative ones using the editor’s settings menu.

This is extremely useful as the GUI can be extended by

existing Python software.

Advanced Validation
Many memory map nodes and their attributes need special

validation, which is not achievable using standard rules that

can be defined in the schema. A good example of such mech-

anism is a conversion factor validator. A read conversion

factor is a formula that takes a raw value of a register and

converts it to a high-level value, usually using basic algebra.

A write conversion factor does the opposite, takes a high-

level value and converts it to a raw value, that can be written

to the hardware. Since our tools need the formula to work

"as is" in both C++ and Python, it has to be syntactically

and semantically correct, which checked by a Python vali-

dation function, using AST (Abstract Syntax Tree) parsing.

Another example might be verifying that fields (sequences

of bits) inside a register don’t overlap. Any inconsistencies

found by validators will be immediately highlighted by the

editor allowing the user to fix them right away.

Special Functionalities Fone in Python

Some features specific to the memory map editor have
been implemented in Python. The first one is the memory
node addressing. An address attribute can be set as a relative
(to the node’s parent), hexadecimal value, or "next", which
indicates that the address should be calculated based on the
node’s predecessor. Addresses are automatically recalcu-

lated when the memory map layout is altered. The same
happens when some attributes (memory size, register width)
are changed.

A memory map can contain submaps, which are memory
nodes that point to a different memory map file. Contents
of submaps are seamlessly loaded and presented as if they
were parts of the top-level map. The editor can detect if
any changes have been made inside a particular submap and
upon saving or exiting the application ask the user what to
do with these. When multiple nodes are referencing the
same submap file, only the first one is editable. Also the
GUI can detect if a submap file has been changed externally
and inform the user.

CODE GENERATION

A tool called PyCheb is used as an entry point for our
code generators. This tool is responsible for opening a mem-

ory map file and initial parsing, providing a comprehensive
interface for other scripts. To make sure that any required
changes and improvements in the generated code are easy
to achieve, the Jinja2 [9] templating engine has been used.

Driver Wrapper
The first main feature of the driver wrapper generator is to

create a CSV (Comma-Separated Values) file, which serves
as an input for EDGE (Encore Driver GEnerator), developed
by the Hardware and Timing section of the Controls group
at CERN.

The second one is to generate a C++ library, which closely
interacts with the EDGE Linux driver. The library provides
a hierarchical interface over every memory node that is de-

fined in a memory map. The interface allows software devel-

opers to read or write to registers and their fields, having all
low-level bit-shifting and masking operations done by the
wrapper. Before setting values, raw or high-level, they are
automatically converted to the proper data type (depending
on the register’s signedness and its width), by rounding the
value and clamping it to the limits of the underlying data
type, avoiding accidental overflows. For blocks of memory,
the wrapper offers an array-like interface, maintaining the
possibility of accessing the raw pointer to the data.

Another interesting functionality is a proxy object, which
can be obtained from an object representing a register. The
proxy, offering an identical interface to its parent, caches all
write operations to the register itself or its children (fields)
and can prepare a register to be written with a single driver
call. A proxy object can be initialized with a value from the
hardware and then all its children can be accessed without the

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA115

Device Control and Integrating Diverse Systems
MOPHA115

495

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

need to read the value from the hardware again, preventing

mismatches in the readout.

FESA

Based on a complete memory map, some parts of a FESA

class, software that runs on a front-end computer, can be

automatically generated. The main file describing a FESA

class is the FESA design document. This XML document

defines the real time behaviour, the data store and the opera-

tional interface provided by the software to the clients.

One of the biggest parts of the design is the definition of

data store fields:

• configuration fields — read only fields,

• setting fields — data to be written to the hardware,

• acquisition fields — values read from the hardware.

 This tool generates FESA fields based on memory map
nodes and their attributes, such as access mode or
persistence. The name of a field is constructed using the
names of its parents, joining them with underscores. In the
case of setting fields, it is the high level value that is being
set, but, as shown by experience, sometimes it might be
useful to set a low level value as well. To achieve that, two
additional fields per field concerned are created:

• overwrite value,

• overwrite mask, or overwrite enable in case of memory

nodes with conversion factors. If this field is set (or is

different from zero), an alarm is raised.

For acquisition fields, an additional field is created for

memory nodes with conversion factors, containing a raw,

low level value.

Another part of the generated FESA design are properties,

which represent the user interface of a FESA class. Inside

the memory map file, a user can define a property which

references existing memory map nodes explicitly or using

a regular expression. If needed, a specialized filter can be

applied. The filter is a body of Python’s lambda expression,

which will be evaluated during the generation. Inside that

filter, PyCheb’s interface can be used freely, so a user can, for

example, create a property containing all readable memory

nodes.

During the development process, it often happens that

the memory layout has been changed and some changes

have to be backported. Usually this requires regeneration

of the design file and then merging of the generated version

with the old one, but retaining changes introduced by the

developer. To solve this issue, parts of the FESA design,

such as custom types, properties of device data fields can be

placed in the memory map file, allowing us to generate the

complete design file.

In addition to the design file, C++ code is being generated.

For memory nodes that are multiplexed based on a cycle

(beam purpose and client) currently being played in the

accelerator complex, two RT (Real Time) actions are created:

• read action, which reads data from the hardware and
sets it in the data store,

• write action, which writes the data from the data store
to the hardware.

 These RT actions extensively use the Driver Wrapper
inter-face. Its proxy mechanism is especially useful, since a
single register can have several corresponding fields in
the data store. If the generation tool detects the presence
of certain registers inside the memory map, it creates
several proper-ties and an RT action needed for handling
the acquisition buffers, using a standardized approach to
read out data from the hardware developed in the RF
group. In case a FESA class is restarted (for example when
the front-end computer is rebooted), the persistent data
store needs to be written to the hardware. The code
responsible for this functionality is generated as well.

CONCLUSION

Opting for the extensive usage of Python has proven to
be the right design choice, due to the rapid development
process and the possibility of combining all existing and
new tools in a single entry point, the memory map editor.
As the com-plete toolset has been used by the software
developers, new requirements and feature requests
emerged. Many of those caused modification of the
memory map schema, which, thanks to the highly
configurable GUI, have been imple-mented in an efficient
manner. Memory map attributes often require special
validation rules, which now can be written in Python. The
code generators, with the logic separated from the view
using a template engine, have been extremely easy to
customize. Since the software and hardware developers at
CERN often work on different platforms, the editor and
the code generators are easily accessible for both Linux and
Windows users.

REFERENCES

[1] A. Rey et al., Cheburashka: a tool for consistent memory“

map configuration across hardware and software”, in Proc.
17th Int. Conf. on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS’13), San Francisco, CA, USA,

Oct. 2013, paper TUPPC116, pp. 848–851

[2] M. Arruat et al., “Front-End Software Architecture”,

ICALEPCS07, Knoxville, Tennessee, USA, 2007,

https://accelconf.web.cern.ch/accelconf/ica07/

PAPERS/WOPA04.PDF

[3] YAML, https://yaml.org

[4] Cheby, https://gitlab.cern.ch/cohtdrivers/cheby

[5] pybind11, https://github.com/pybind/pybind11

[6] Qt, https://www.qt.io

[7] yaml-cpp, https://github.com/jbeder/yaml-cpp

[8] breakpad, https://chromium.googlesource.com/

breakpad/breakpad

[9] Jinja2, https://palletsprojects.com/p/jinja

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA115

MOPHA115
496

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

