
PyDM - EXTENSION POINTS
H. H. Slepicka∗, M. Gibbs, SLAC National Accelerator Laboratory, Menlo Park, USA

Abstract
PyDM (Python Display Manager) is a Python and Qt-

based framework for building user interfaces for control sys-
tems providing a no-code, drag-and-drop system to make
simple screens, as well as a straightforward Python frame-
work to build complex applications. PyDM developers and
users can easily create complex applications using existing
Python packages such as NumPy, SciPy, Scikit-learn and
others. With high level interfaces for data plugins and ex-
ternal tools, PyDM can be extended with new widgets, in-
tegration with facility-speciic tools (electronic log books,
data logger viewers, et cetera) as well as new data sources
(EPICS, Tango, ModBus, Web Services, etc) without the
need to recompile or change the PyDM internal source.

PyDM
In 2015, studies were performed to evaluate software to

be used as the next-generation display manager[1] at SLAC.
Based on the output of the study and evaluation of poten-

tial candidates, it was concluded that a new framework was
required to fulil the demands from scientists, operators and
engineers for user interfaces and application development.

PyDM is an open-source Python-based framework for
control system graphical user interfaces (GUIs) intended to
span the range from simple displays without any dynamic
behavior, to complex high level applications, with the same
set of widgets.

It provides a system for the drag-and-drop creation of user
interfaces using Qt Designer[2] and it also allows for the
creation of displays driven by Python code.

Since PyDM is based on Python, it can be leverage the
scientiic Python ecosystem (see Fig. 1).

Figure 1: Scientiic Python Ecosystem. (Credit: Jake Van-
derPlas, ”The Unexpected Efectiveness of Python in Sci-
ence”, PyCon 2017)

∗ slepicka@slac.stanford.edu

BEYOND DRAG AND DROP
As many other display managers, PyDM allow users to

create synoptic displays via drag-and-drop of widgets at a
form in a WYSIWYG (What You See Is What You Get)[3]
fashion.

While this is a great solution for synoptic displays in
which process variables are presented in a very well deined
and static way, it imposes limitations on what can be done
when business logic and client-side data processing are de-
sired for more intelligent displays.

To overcome this limitation, PyDM takes advantage of
the Qt Framework and also from the Python language to al-
low users to develop the view using the Qt Designer (Fig.-2)
and after that, users can create a Python class (see Listing-
1) that allows them to add code to the displays and inter-
face with the widgets created using the Qt Designer through
code.

Figure 2: UI developed via drag-and-drop using Qt De-
signer

from pydm import Display

class MyDisplay(Display):
def __init__(self, parent=None, args=None,

macros=None):
super().__init__(...)
Interact here with your ui..
self.ui.form.setTitle('Hello ICALEPCS')

def ui_filename(self):
return 'inline_motor.ui'

Listing 1: Example of a Display class

Another possibility is to develop the whole display or ap-
plication using just Python code, which is again possible
due to fact that PyDM is based on Python and Qt. This ap-
proach imposes a higher learning curve since users must be
familiar with the composition of layouts, the instantiating
of widgets as well as the coniguration of their properties
via Python code.

The PyDM Tutorial[4] covers all three ways of making
displays and walks the user through each step with details.

NEW WIDGETS MADE EASY
PyDM widgets are data source agnostic, this means that

they have no knowledge of the origin of the data coming to
them.

The widgets provided with PyDM rely on seven key
pieces of information from the data-sources: connection sta-

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA135

User Interfaces, User Perspective, and User Experience(UX)
MOPHA135

539

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

tus, current value, alarm status, write access status, enumer-
ation strings, engineering units and precision.

From the seven items above, only connection status and
current value are needed for display widgets and addition-
ally write access status is needed for input widgets. All the
other information is optional and used to enhance the user
experience.

Creating New Widgets
In order to help developers with the development of new

widgets and establish a uniform interface, PyDM provides
a base class hierarchy for widgets (See Fig.-3).

Figure 3: PyDM helper class hierarchy for widgets

PyDMPrimitiveWidget is the base class for all PyDM
compatible widgets and it provides the needed pieces to add
Rules support for custom widgets. Most of the time, custom
widgets that require no channels, e.g. containers, embedded
displays, auxiliary buttons such as shell command, or wid-
gets that require many channnels that would not be conig-
ured through a simple text property, e.g. plots, will inherit
from PyDMPrimitiveWidget.

PyDMWidget is the base class for all display widgets, e.g.
as label, image display, scale indicator, tab bar, etc. By
inheriting from PyDMWidget, developers get the whole ma-
chinery in place to interact with a channel. By extending
the callback methods, one can easily create a new widget

that talks with a data source (See Listing-2 in which we
demonstrate how one can create a Progress Bar widget that
displays its progress based on the value of a channel data
source).

PyDMWritableWidget extends PyDMWidget and adds
the callback for write access as well as the machinery to
disable the widget in case the data source informs that the
requested channel is read-only.

from qtpy.QtWidgets import QProgressBar
from pydm.widgets.base import PyDMWidget

class MyProgBar(QProgressBar, PyDMWidget):
def __init__(self, parent=None, init_channel
=None):

super().__init__(...)

def value_changed(self, new_value):
super().value_changed(new_value)
self.setValue(new_value)

Listing 2: Example of a Progress Bar widget

Widgets and Qt Designer
Since widgets are Python code, as long as they are in-

stalled as Python packages or can be reached through the
PYTHONPATH, PyDM will be able to run with a custom
widget without the need to tweak the PyDM package itself.

This approach is valid for Displays that are developed
with code and no other work is required, but users won’t
be able to ind this new widget in Qt Designer for a drag-
and-drop display unless this widget is transformed into a
plugin.

PyDM provides a simple method to create plugins that
can be found by the Qt Designer. Using as an example the
widget from Listing-2, developers would need to utilize the
qtplugin_factory in order to add the needed interfaces for
Designer (See Listing-3)

from pydm.widgets.qt_plugin_base import
qtplugin_factory

from my_widgets import MyProgBar

ProgressBar plugin
MyProgBarPlugin = qtplugin_factory(MyProgBar,
group="My Custom Widgets")

Listing 3: Example of a Qt Designer Plugin

Once the plugin is available, Qt Designer inspects the
paths deined in the PYQTDESIGNERPATH environment
variable and loads the PyQt plugins for each ile with a ile-
name ending in _plugin.py, e.g. my_custom_plugin.py.

The _plugin.py ile must import the plugin created at
Listing-3.

The end result will be a new category at the Qt Designer’s
Widget Box called ”My Custom Widgets” with the ”Prog-
Bar” widget inside which can now be used to create displays
via drag-and-drop.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA135

MOPHA135
540

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

Figure 4: With the new PyDM 2.x Data Architecture, a widget with a PyDMChannel instance requests a connection to a
data plugin. When new data is available from a data source (typically a control system), the Connection instance adds data
to the DataStore and notiies the channel instance, which then runs the subscribed callbacks on the Widget. For writing
operations, the channel instance transmit the payload created by the widget to the connection, which writes the data to the
data source.

CONNECTING WIDGETS TO DATA
As discussed above, PyDM base widgets are data source

agnostic and rely on seven basic pieces of information.
PyDM widgets connect to data sources via PyDMChan-

nel instances that are linked to a certain Data Plugins.
Data Plugins are Python classes that provide data from

a speciic type of data source to one or more PyDMChan-
nel instances. A Data Plugin must have a unique identi-
ier for its protocol (e.g. ”ca” for EPICS Channel Access,
”archiver” for Archiver Appliance, ”modbus” for ModBus
plugins) and also a PyDMConnection class deinition so
connections to the data source can be established using this
Data Plugin.

PyDM’s dynamic data plugin loading system
looks for data plugins in folders speciied in the
PYDM_DATA_PLUGINS_PATH environment variable.
The requirements for the autoloader are:

– The ilename must end with _plugin.py;

– The protocol identiier must be unique;

– The plugin class must inherit from PyDMPlugin;

– The plugin class must provide a class for connection
that inherits from PyDMConnection;

In the PyDM 1.x series, only scalar and scalar arrays were
allowed to be transferred as values to Channels via the Qt
signals, which imposed a limitation on the type and amount
of data that could be handled. Moreover, this design also
imposed a copy of the data for each connection tied to a
data plugin connection since each piece of data was trans-
ferred using an individual Qt Signal which was sent to the

proper slot at each of the widgets sharing the same con-
nection. With the PyDM 2.x series, the data transferring
mechanism was refactored in such a way that data plugins
now store a data payload dictionary in a central storage area
called the DataStore (See Fig.-4).

The DataStore class contains two dictionaries, data and
introspection. Both are keyed on the channel address, and
the values are the data payload and a introspection lookup
table respectively. This new design allows PyDM to store
structured and complex data to be consumed by the wid-
gets. The introspection lookup guides PyDM base widgets
on which ields in the payload are used for the seven key
data items needed for a widget to work.

Data Plugin speciic widgets can take advantage of addi-
tional metadata stored in the DataStore to enhance the user
experience and provide capabilities that were not possible
with the previous design of PyDM 1.x series.

A PyDMChannel is a class that connects a widget to a
speciic data plugin through the speciic protocol identiier
along with a connection string according to the format de-
ined by the data plugin.

When new data is available at the PyDMConnection, it
stores the data in the DataStore and emits a signal to all chan-
nels connected to it notifying them that new data is available.
The PyDMChannel instances fetch data from the DataStore
for the speciic channel address and execute the subscribed
callbacks for the widget with the new data and introspection
information.

Creating a New Data Plugin
PyDM provides two data plugins out of the box, EPICS

Channel Access and Archiver Appliance due to the fact that

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA135

User Interfaces, User Perspective, and User Experience(UX)
MOPHA135

541

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

the SLAC particle accelerators use EPICS for their control
system. As described above, one can create new data plug-
ins and use them with PyDM and its widgets.

from pydm.data_store import DataKeys
from pydm.data_plugins.plugin import PyDMPlugin,

PyDMConnection

class Connection(PyDMConnection):
def __init__(self, ...):

super().__init__(...)
self._value = 0
self.data[DataKeys.CONNECTION] = True
self.data[DataKeys.WRITE_ACCESS] = True
self.send_new_value()

def send_new_value(self):
if self._value is not None:

value = self._value
self.data[DataKeys.VALUE] = value

self.send_to_channel()

def receive_from_channel(self, payload):
new_val = payload.get(DataKeys.VALUE,

None)
self._value = new_val
self.send_new_value()

class NumberEchoPlugin(PyDMPlugin):
protocol = "echo"
connection_class = Connection

Listing 4: Example of a PyDM Plugin that echoes a number
value using the default introspection keys

Widgets can connect to the data plugin at Listing-4 using
”echo://test” in which ”echo” is the protocol and ”test” is
the address identiier.

BRING YOUR EXTERNAL TOOLS
Displays and applications often need to be integrated

with facility-speciic electronic logbooks, control system
utility software and more.

One of the PyDM design principles is to not enforce
SLAC-speciic tools as part of the framework, but instead
ofer a well-deined and lexible interface for users and de-
velopers to extend it and easily connect to their own tools.

PyDM refer to those tools as ExternalTools, which are
dynamically loaded into PyDM following the same concept
as the data plugins (with some small diferences):

– The ilename must end with _tool.py;

– The tool class must inherit from ExternalTool (See
Listing-5);

– The external tool ile must be reachable through the
PYDM_TOOLS_PATH or loaded via the PyDM Main
Window menu ”Tools, Load...”;

Developers can deine if an external tool is to be used with
widgets and/or without widgets. If a tool is to be used with
a widget, it will be rendered in the Context Menu (Right

Click) for a widget if the tool is compatible with that par-
ticular widget, otherwise it won’t be added to the menu to
avoid confusion and mistake by users. If the tool is to be
used without widgets, it will be rendered in the PyDM main
window Tools menu.

When tools are invoked the call method will be invoked,
sending the channels in the case of a widget-compatible tool
and the sender, which is generally the widget. In the case
of a tool that is not to be used with widgets, both channels
and sender will be None.

import subprocess
import logging
from pydm.tools import ExternalTool
from pydm.utilities.iconfont import IconFont
from pydm.utilities.remove_protocol import

remove_protocol

logger = logging.getLogger(__name__)

class ProbeTool(ExternalTool):

def __init__(self):
icon = IconFont().icon("cogs")
name = "Probe"
group = "EPICS"
use_with_widgets = True
kwargs = {"icon":icon, "name":name, "

group":group, "use_with_widgets":
use_with_widgets}

super().__init__(**kwargs)

def call(self, channels, sender):
cmd = "probe"
args = [cmd]
if not channels:

channels = []
for ch in channels:

args.append(remove_protocol(ch.
address))

try:
subprocess.Popen(args, stdout=

subprocess.PIPE, stderr=subprocess.PIPE)
except Exception as e:

logger.error("Error while invoking
Probe. Exception was: %s", str(e))

Listing 5: Example of an External Tool which opens an
external program called Probe and sends as parameter the
channel used at the Widget.

CUSTOMIZING THE LOOK AND FEEL
The Qt Framework provides a great feature called Qt

Style Sheet[5], with terminology and syntactic rules that are
almost identical to CSS (Cascading Style Sheets)[6].

Based on that, PyDM widgets do not impose style sheet
coniguration to allow for maximum customization of the
look and feel by developers and end users to support facility-
speciic color schemes, typography, etc.

PyDM provides properties on widgets that can be used as
selectors when developing custom style sheets (See Listing-
6 in which we use custom properties such as error and in-
terlocked). QSS extends CSS by allowing users to tweak Qt
properties via the style sheet rules.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA135

MOPHA135
542

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

PneumaticValve[error="Lost Vacuum"] #icon {
qproperty-penStyle: "Qt::DotLine";
qproperty-penWidth: 1;
qproperty-brush: red;

}
PneumaticValve[interlocked="true"] #interlock {

border: 2px solid red;
}
PneumaticValve[interlocked="false"] #interlock {

border: 0px;
}

Listing 6: Example of a Qt Style Sheet (QSS) for
a Pneumatic Valve widget customization using property
selectors and changing Qt properties via the style sheet.

CONCLUSION
PyDM can be extended beyond static displays by leverag-

ing the Python language and its wide ecosystem of packages.
Users can create intelligent applications, new data plugins
to interface with diferent kinds of data sources, new wid-
gets, and integrate with third-party external tools with min-
imal code.

The lexibility and extensibility of the framework opens
new avenues for innovative features and wide usage at multi-

disciplinary facilities - not only at particle accelerators and
science laboratories.

ACKNOWLEDGMENTS
The authors would like to thank all the contributors to

the PyDM code as well as users that provided valuable feed-
back, bug reports and feature requests.

REFERENCES
[1] A. Babbitt, L. Jose, M. Carvalho, M. Gibbs, and E. Williams,

“An Evaluation of EDM Replacement Candidates at SLAC,”
2015, unpublished.

[2] The Qt Company Ltd. (2019). Qt Designer Manual, https:
//doc.qt.io/qt-5/qtdesigner-manual.html

[3] Wikipedia contributors, Wysiwyg, 2001. https : / / en .
wikipedia.org/wiki/WYSIWYG

[4] M. Gibbs and H. Slepicka. (2018). Pydm tutorial, https://
slaclab.github.io/pydm-tutorial/

[5] The Qt Company Ltd. (2019). The style sheet syntax, https:
//doc.qt.io/qt-5/stylesheet-syntax.html

[6] H. W. Lie and B. Bos, Cascading Style Sheets: Designing for
the Web. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1997, isbn: 0-201-41998-X.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA135

User Interfaces, User Perspective, and User Experience(UX)
MOPHA135

543

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

