
THE LINUX DEVICE DRIVER FRAMEWORK FOR
HIGH-THROUGHPUT LOSSLESS DATA STREAMING APPLICATIONS∗

K. Vodopivec†, E. Breeding, J. Sinclair, Oak Ridge National Laboratory, Oak Ridge,USA

Abstract
Many applications in experimental physics facilities re-

quire custom hardware solutions to control process param-
eters or to acquire data at high rates with high integrity.
These hardware solutions typically require custom software
implementations. The neutron scattering detectors at the
Spallation Neutron Source at Oak Ridge National Labora-
tory transfer custom protocols over optical fiber connected
to a PCI Express (PCIe) read-out board. A dedicated kernel-
mode device driver interfaces the PCIe read-out board to
the software application. The device driver must be able
to sustain data bursts from a pulsed source while acquiring
data for long periods of time. The same optical channel is
also used as bi-directional low-latency communication link
to detector electronics for configuration, real time health
monitoring and fault detection. This article presents a Linux
device driver design, implementation challenges in a low-
latency high-throughput setup, kernel driver optimization
techniques, real use case benchmarks and discusses the im-
portance of clean application programming interface for
seamless integration in control systems. This generic frame-
work has been extended beyond neutron data acquisition,
thus, making it suitable for new and diverse applications as
well as rapid development of field programmable gate array
(FPGA) firmware.

INTRODUCTION
In this article we present a low-level software framework

that facilitates rapid PCIe-based FPGA firmware develop-
ment and fast integration into control systems such as Ex-
perimental Physics and Industrical Control System (EPICS).
At the Spallation Neutron Source (SNS), custom hardware
and electronics are commonly developed to implement func-
tionality that is not commercially available. Throughout the
design and implementation, FPGA firmware interfaces and
functionality are subject to change, and thus, software is
needed to drive test cases and verify functionality. When
firmware development is completed, new equipment needs
to be integrated into the control system for long term opera-
tions. Software must provide a means to control firmware
parameters, monitor functionality and read out data at very
∗ This manuscript has been authored by UT-Battelle, LLC under Con-

tract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
The United States Government retains and the publisher, by accepting
the article for publication, acknowledges that the United States Govern-
ment retains a non-exclusive, paid-up, irrevocable, world-wide license
to publish or reproduce the published form of this manuscript, or al-
low others to do so, for United States Government purposes. The De-
partment of Energy will provide public access to these results of fed-
erally sponsored research in accordance with the DOE Public Access
Plan(http://energy.gov/downloads/doe-public-access-plan).

† vodopiveck@ornl.gov

high sustained data rates. Our software framework, as shown
in Figure 1, consists of a Linux kernel device driver for tight
integration with PCIe devices, the user space library provid-
ing powerful but elegant application programming interfaces
and several generic tools for swift prototyping and verifica-
tion.

Figure 1: Device driver framework architecture.

LINUX DEVICE DRIVER
Detector data from SNS neutron scattering instruments

are sent as packets over optical fiber to multiple PCIe read-
out boards hosted in a Linux server. The read-out board uses
a Xilinx FPGA to handle both the PCIe interface and the
packet transfers with the detector electronics. The theoretical

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA156

MOPHA156
602

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems



maximum data rate on the optical channel is 212.5 MB/s;
this rate is established by the 2.5 Gbps line rate and 8b/10b
encoding of the physical layer device used by the detector
electronics. Due to limited memory resources on the detector
electronics, packet sizes are capped by design to be ≤ 10kB.
Small packet sizes coupled with a sustained rate of 200MB/s
results in an extremely high interrupt rate. In the Linux
environment, this means implementing a kernel device driver
with direct access to firmware resources.

FPGA firmware verifies and transfers incoming data pack-
ets to the CPU using direct memory access (DMA) to con-
tiguous system memory. Physical memory allocation is
performed by the driver, and the driver communicates both
the starting address and size of this memory to the firmware.
This contiguous memory is managed as a circular buffer.
Producer and consumer indices protect from overwriting
data yet to be processed by software. It is thus evident
that allocated memory must be big enough to accommo-
date processing scheduling latencies and sustain preemption
fluctuations.

Data Transfers

Depending on the selected memory allocator, the Linux
kernel generally doesn’t allow the allocation of large blocks
of physical memory. The upper limit is a function of both
memory page size – driven by CPU architecture – and the
Linux kernel compile-time option called MAX_ORDER.
On Intel x86 platforms, this upper limit is 4MB; however,
this is the upper limit which degrades over time as mem-
ory allocations of various sizes can fragment the available
memory pool. Furthermore, the 4MB buffer, even when
allocated early in the boot process, is not adequate for the
rates required by some of the instruments at SNS. To achieve
larger buffer sizes, our driver uses a technique commonly
known as memory reservation. This method reserves phys-
ical memory before the Linux kernel boots, thus making
the memory invisible to the Linux kernel. Knowing the re-
served memory physical address range, the device driver can
use and manage reserved memory for its private operations.
Memory reservation can be requested through the memmap
kernel boot-time parameter and allows the reservation of
arbitrary sizes contingent on installed memory. While this
technique works well with Linux kernels 2.6 and above, it is
considered fragile by the Linux community. Starting with
Linux 3.6 (back ported to 3.4), the new integrated func-
tionality called Contiguous Memory Allocator (CMA) is
available. Like memmap memory reservation, CMA blocks
off parts of memory at boot time, but it later works with the
Linux memory allocator to allow the use of reserved mem-
ory for arbitrary allocations, until there’s a request for a large
memory block. This allows for better memory utilization
in dynamic environments but has no significant impact in
highly specialized applications where large memory blocks
are in constant use.

Interrupt Handling
While it is common practice for DMA engines to gener-

ate an interrupt per received packet, this is not sustainable
in this scenario given the required throughput and small
packet sizes. Local measurements on a high-end server
show that the Linux operating system can handle tens of
thousands of interrupts per second; however, with growing
numbers, the interrupt latency increases and becomes non-
deterministic. Each interrupt involves pre-empting currently
running tasks, switching the CPU context, and potentially
elevating to privileged mode. All these operations cost CPU
cycles and consequently have a negative impact on overall
system performance. Most high throughput devices (like
gigabit Network Interface Cards or RAID controllers) com-
bine interrupt requests into groups and assert one interrupt
per group. This technique is commonly referred to as inter-
rupt coalescing. For our application, interrupt coalescing
involves transferring multiple incoming packets via DMA
before sending them and then issuing a single interrupt. In
our framework, the driver sets the number of packets per
interrupt to coalesce. Using this approach, we can govern
the number of interrupts delivered to the operating system.
The number of packets to coalesce can be set as a static
group size based on expected throughput, at which size the
interrupts fluctuate depending on the current throughput.
Alternately, the group size can change dynamically with
fluctuating throughput to keep the interrupt rate constant.

Figure 2: Expected interrupt latency distribution as mea-
sured on Linux 3.10 kernel.

A high number of interrupts can have a significant impact
on overall performance as it adversely affects both kernel
tasks and application processes. A high interrupt rate also
increases the standard deviation of interrupt latency. We
define interrupt latency as the time between the assertion
of the interrupt by the firmware and the start of the corre-
sponding interrupt handler routine in the operating system.
Due to the limited buffering resources in our hardware, long
interrupt latencies could result in data loss. While limiting
the number of interrupts greatly reduces latencies, it doesn’t

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA156

Device Control and Integrating Diverse Systems
MOPHA156

603

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



eliminate the potential for long latencies. Our measurements
show that Message Signaled Interrupts (MSI) are delivered
to the kernel with more deterministic delays than legacy PCI
interrupts. On multi-core systems, further improvements to
interrupt latency times can be made by isolating one CPU
core and dedicating it to the interrupt handler routine. Care
must be taken to set CPU affinity for both kernel tasks and
user space processes. CPU isolation is the most intense mod-
ification of the operating system configuration. It may also
not fully utilize a single CPU core, which reduces overall
system performance capability. We find it necessary only
when many high throughput devices are installed in the same
system. Figure 2 shows the distribution of interrupt latency
measured on regular Linux kernel without any particular
optimizations applied. Actual interrupt delay numbers vary
based on selected CPU model and can be heavily impacted
by the other system tasks.

APPLICATION LIBRARY
The Linux kernel environment is not well-suited for gen-

eral purpose application development due to its limited pro-
gramming interfaces and very little control or management
of the actual code behavior. Programming mistakes will
often result in system crashes, potentially changing system
behavior in unpredictable ways, and in extreme cases even
damaging hardware. Thus, most software applications exe-
cute in user space to take advantage of the rich set of pro-
gramming interfaces provided by standard libraries, which
include standardized interfaces for common hardware de-
vices; however, user space applications must access hard-
ware through a device driver. The application must assume
additional complexity in order to interact correctly with the
driver. To eliminate this complexity from the application,
we have created a high-level application interface library
that focuses on performance, general-purpose usability, and
ease of use.

Communication with custom Linux device drivers can be
done in several ways, including exposing the device through
the /proc file system, and more recently using the sysfs al-
ternative. Most commonly the device file approach is used,
where each device is explicitly represented with a distinct
device file in the /dev/ folder. Device files can be opened
as regular files, but such access is subject to device driver
implementation as to what file functions are supported. The
read() and write() system functions allow the transfer of
data from/to the device driver, and bi-directional ioctl() is a
general way for communicating with the device driver. It is
exactly this universal ability to transfer arbitrary data to and
from a kernel driver that makes the use of ioctl() unpopular
with Linux developer community; however, due to its wide
usage it is unlikely to be removed in future Linux kernel ver-
sions. Our device driver implements exclusively pread() and
pwrite() hooks, and it uses an offset parameter as an index
to select particular functionality within the device driver.

The application library provides C/C++ interface func-
tions to work with devices through the Linux device driver.

Functions to open and close the device are thin wrappers
around the device file open() and close(), but add extra
checks. When a device is opened, the device driver and
application library exchange protocol versions to ensure
compatibility. When configured for exclusive access, the
device driver will reject any second or subsequent attempts
to open the device. One of the commonly used functions
is to query for device status and information from the de-
vice driver, such as the amount of DMA memory allocated.
Functions that allow reading and writing of device registers,
and function to transfer data to and from DMA memory, are
described next.

The majority of device functionality is exposed through
memory-mapped I/O register access, which allows the soft-
ware application to use the register map based on the
firmware implementation, without a reloading of the device
driver. This capability is especially useful during FPGA
firmware design and development.

Figure 3: Implementation of zero-copy approach with con-
tiguous DMA memory.

Functions for transferring data to and from the device
are designed using a “zero-copy” approach. With zero-copy,
data packets written to system memory by PCIe DMA engine
are directly manageable by the software application. When
an application requests data from DMA memory, the device
driver and library exchange their producer and consumer
indices to determine the valid data range. Then the library
returns a pointer to the DMA memory where valid data
begins, along with its size. The application is responsible
for interpreting the data as packets. The byte count of the
processed data must be acknowledged back to the library,
which then moves the consumer index in DMA memory

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA156

MOPHA156
604

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems



accordingly, thereby enabling the FPGA firmware to push
more data. Figure 3 visualizes the implemented zero-copy
concept. This generic approach of passing memory blocks
to the application allows for arbitrary data formats as well as
DMA memory sizes. It also supports a DMA scatter-gather
mechanism if implemented by the firmware in the future.
One disadvantage of this approach is in the handling of the
circular nature of the DMA buffer. This is especially true
for the case where the application is decoding packets in-
situ. As the producer index reaches the end of the circular
buffer, the last packet gets split, with its beginning at the
end of the circular buffer and the remaining part rolling over
to the beginning of the circular buffer. In such cases the
application cannot process the data and reports back to the
library a processed data count of zero bytes. The library
detects this rollover case and will use a small internally
allocated buffer to make a copy of the contiguous data. The
next time the application asks for data, it receives a pointer
to the copied buffer. This is the only scenario in which data
is actually copied, and the impact of this copy operation on
the overall library performance overhead is negligible.

DIAGNOSTIC TOOLS
The diagnostic tools complete the framework and they

serve three roles. As complete and executable programs,
they serve as working code examples that are easy to under-
stand and can be used as templates for application-specific
modifications. Secondly, with generic diagnostic tools al-
ready available out-of-the-box, new projects can immedi-
ately focus on the development of the FPGA firmware and
the software application, in parallel, and FPGA develop-
ment can be tested almost completely before the customized
software application is complete. The last but very impor-
tant role of the diagnostic tools is to serve as an unbiased
mediator between the FPGA firmware and the software ap-
plication. Because they are used in many applications, are
well tested, and less likely to misbehave, these tools can help
identify and narrow down the source of any problems. The
set of diagnostic utilities includes a tool for reading or writ-
ing arbitrary device registers; a tool for programming flash
memory and rapid firmware updates; a data verification tool
that interprets test packets and verifies test pattern integrity;
a proxy tool that enables sending and receiving of packets
through a POSIX pipe; and finally a Python extension to the

application library with an analogous interface. While not as
performant as C code, this last element is especially useful
for quick prototyping and testing through Python scripting.

DEPLOYMENT STATUS
This Linux device driver framework has been extensively

used during the past 5 years to collect event-based neutron
scattering data from 17 neutron instruments at the Spallation
Neutron Source as further explained in [1], and is being com-
missioned on 4 additional neutron instruments at the High
Flux Isotope Reactor as of late 2019. It has been demon-
strated to be capable of handling 3 distinct devices running at
the maximum throughput of 200MB/s per device on a multi-
core CPU system. This is more than adequate for all current
SNS and HFIR neutron instruments, and provides adequate
capacity for several even higher flux neutron instruments
being designed for the Second Target Station project. The
framework has also been entrusted with handling the raw am-
plitude and phase data of the newly developed LLRF system
for the APS Upgrade project at Argonne National Labora-
tory, and has enabled APS to perform rapid prototyping of
the MicroTCA platform for digital LLRF control. More-
over, the framework has supported accelerator developments
at the Spallation Neutron Source for the MicroTCA-based
FPGA firmware for Ring LLRF systems, the Injection Kicker
Waveform monitor, and the MPS trigger controller.

SUMMARY
In this paper we presented the generic Linux device driver

framework, as used in custom FPGA applications at the Oak
Ridge National Laboratory and Argonne National Labora-
tory. Specific areas addressed in this article include: kernel
driver optimization techniques, real use case benchmarks,
and discuss the importance of a clean application program-
ming interface (API) for seamless integration into control
systems.

REFERENCES
[1] K. Vodopivec, B. Vacaliuc, “High Throughput Data Acquisi-

tion with EPICS”, in Proc. ICALEPCS2017, https://doi.
org/10.18429/JACoW-ICALEPCS2017-TUBPA05, 2018.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA156

Device Control and Integrating Diverse Systems
MOPHA156

605

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


