
AN EMBEDDED IOC FOR 100 MeV CYCLOTRON RF CONTROL

Z.G. Yin†, X.L. Fu, X.T. Lu, T.J. Zhang, China Institute of Atomic Energy, Beijing, China
X.E. Mu, North China University of Technology, Beijing, China

Abstract
An ARM9 based embedded controller for 100MeV cy-

clotron RF control has been successfully developed and
tested with EPICS control software. The controller is im-
plemented as a 3U VME long card, located in the first slot
of the LLRF control crate, as a supervise module that con-
tinuously monitors the status of the RF system through a
costume designed backplane and related ADCs located on
other boards in the crate. For high components density and
signal integrate considerations, the PCB layout adopts a 6
layer design. The Debian GNU/ Linux distribution for the
ARM architecture has been selected as an operating system
for both robustness and convenience. EPICS device sup-
port, as well as Linux driver routings, has been written and
tested to interface database records to the onboard 12 mul-
tichannel 16bits ADCs and DACs. In the meantime, a chip
selecting encoding-decoding strategy has been imple-
mented from both software and hardware aspects to extend
the SPI bus of the AT91SAM9g20 processor. The detailed
software, as well as hardware designed, will be reported in
this paper.

INTRODUCTION
CYCIAE-100 cyclotron is the proton-driven accelerator

of Beijing Radioactive Ion Facility. It provides a continu-
ously adjustable high-intensity proton beam with energy up
to 100MeV and intensity up to 520uA [1]. The CYCIAE-
100 cyclotron radiofrequency system consists of two sets
of room temperature resonators, two 100kW power ampli-
fiers and two sets of Low-Level RF systems [2-5]. The
LLRF crate is located in the RF power amplifier room, typ-
ically with no operators nearby. So, it is required to super-

vise the RF system parameters such as the dee voltage am-
plitude, phase, incident power, and reflected power, etc. in
the cyclotron control room, during daily operations. In the
field of accelerator control, the EPICS software package is
widely adopted to build control system and gain remote ac-
cess over ethernet. Generally speaking, EPICS IOC control
software can run on various kinds of hardware and operat-
ing systems. For example, it runs on x86 PC with windows
and arm SOCs with Linux operating system. In order to
reduce the volume and power consumption, the reported
IOC was designed based on arm9 SOC chip with embed-
ded Linux OS. Thus, it can be installed in the LLRF chassis
as a long 3U VME card, as shown in Figure 1. The hard-
ware, firmware and software design of this IOC module
will be reviewed in the following section of this paper.

HARDWARE
ARM9 series processors combine the advantages of high

computational power with a small footprint. It also pro-
vides advantages such as high reliability and low power
consumption. These features make it ideal for embedded
controller design. In recent years, IOC based on ARM9
processor has been widely adopted for the control of many
large scientific devices around the world. For the hardware
designs of the IOC described in this paper, an
AT91SAM9g20 processor has been selected as the central
processing unit. Besides, the hardware design also includes
64MB SDRAM as memory, selects NAND FLASH and
SD card to store OS and data. Other related hardware re-
sources are one USB bus, two serial ports, two SPI inter-
faces, one Ethernet, 40 GPIO, etc. The block diagram of
the hardware design of the embedded IOC is shown in Fig-
ure 2.

Figure 1: The embedded IOC as VME 3U module.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA165

Device Control and Integrating Diverse Systems
MOPHA165

625

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

The major function of the embedded IOC is to imple-
ment interlocks by using EPICS Process Variables of the
main control system. This IOC monitors PV value of the
main control system via channel access protocol, performs
logical calculations and inhibit RF driven when necessary.
The protections include the interlock of water-cooling of
RF cavities, the main magnetic field, vacuum, and the RF
amplifies. For example, if the final stage amplifier reflec-
tion power goes high, the PV value with the name
“RFAmp:rev.Power” in the main control system changes
accordingly. Periodically, the interlock routing in embed-
ded IOC read this PV, if the value is higher than the preset
threshold, the IOC will output low at certain GPIO pin to
switch off the RF modulator. In this way, the RF drive to
the RF power amplifier will be prohibited. Other related
RF interlocks are implemented in a similar manner.

Figure 2: Hardware design of the embedded IOC.

In the reported low-level RF system, the low-level pa-
rameters such as the amplitude, phase of the open-loop
driven are stored in the FLASH memory of DSP. Those
high-level starting parameters, such as the power level of
the pulse train, the relative phase of two cavities, etc. are
managed by the IOC and stored in the file system of the
embedded computer. At the operating time of CYCIAE-
100 cyclotron, these high-level parameters can be adjusted
online through the serial port, from IOC to DSP. Cyclotron
operators can send commands/data to embedded IOC
through CA protocol. After embedded IOC parsing the re-
mote command and extracting parameters, it sends the
command to DSP through the serial port to modify the rel-
evant operating parameters of the RF system. In the mean-
time, the LLRF system can report status and abnormals to
IOC through the serial port. Afterward, the embedded IOC
can generate status information and alarm information, and
forwarding to the remote control computer via CA Proto-
col.

In order to monitor and control the parameters of low-
level RF system, the embedded IOC uses 4-channel ADC
chips with 16-bit resolution (the ADS8341) to digitalize the
key parameters of the LLRF system. It also utilizes 4-chan-
nel DAC chips with 16-bit resolution (the DAC8565) to set
the work point of the low-level RF system. Typically, after
DACs, the design includes several OPAMPs to obtain the
required signal level. The ADC and DAC devices are con-
nected to AT91SAM9g20 processor through SPI bus. This
SPI bus is distributed to every module in the crate by the

user-defined backplane. Since each low-level RF carte
needs to detect and control up to 48 analogy signals, at least
12 SPI slave chip select signals are required, and the num-
ber of SPI bus slaves of the AT91SAM9g20 processor can-
not meet the requirement. Therefore, we use 74LV154 de-
coder to expand the 4 bits chip select signals to 16 bits.
Thus make embedded IOC hardware supports 64 analog
input/output channels.

SOFTWARE
The software structure of the EPICS based control sys-

tem typically consists of 3 layers, including the operator
interface running at the operator end, IOC and channel ac-
cess protocol running at the server-side. In the CYCIAE-
100 cyclotron low-level RF system, the operator interface
is developed using CSS and PyQt. It can run on multiple
operating systems. A Debian GNU/Linux for the ARM ar-
chitecture is selected for embedded IOC. A set of EPICS
record database for the low-level system RF system has
been developed, together with corresponding device sup-
port and EPICS device drivers. Since the hardware design
adopts a 4 to16 extension of SPI chip select, a correspond-
ing modified SPI Linux kernel driver has been developed.
The Linux kernel of version 2.6.38 has been cross-com-
piled to integrate this special modification SPI driver. In
the mean-time, the Board Support Package is also modified
according to the hardware.

In brief, the embedded IOC software design work mainly
includes the development of SPI device driver for Linux
kernel; the development of EPCIS IOC database, EPCIS
serial device, GPIO device, and SPI device driver support
routing; OPI interface, etc. In the following section, the de-
velopment of SPI device drivers, EPCIS serial device driv-
ers, and OPI interfaces will be detailly reported.

SPI Device Driver
The hardware design of 100MeV IOC system modified

the Chip Selection of SPI bus, the Linux kernel driver
should be adjusted accordingly to enable system-level
functionality. In Linux kernel 2.6, the SPI bus is treated as
a character device. SPI devices have a limited userspace
API, supporting basic half-duplex read() and write() access
to SPI slave devices. Using ioctl() requests, full-duplex
transfers and device I/O configuration are also available.
The standard version implementation doesn’t include the
feature of chip select extending, therefore line by line read
and modification of the code has to be done. The first step
is to add an atmel_spi_data structure [6] to describe which
GPIO they use as CS line and as well to enable or not the
use of the CS decode feature. Secondly, the at91_add_de-
vice_spi() has been revamped, it is now used to add an SPI
controller device only. The boards need to register their
SPI devices with spi_register_board_info(). The third step
is to modify the relevant code in the atmel_spi.c file under
the Linux-2.6.38/drivers/spi/ folder, to add decoding sup-
port for the driver. Lastly, it is needed to modify the board
support level definition file board-sam9g20ek.c under the

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA165

MOPHA165
626

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

Linux-2.6.38/arch/arm/match-at91/ folder, register the ex-
tended SPI device to the Linux device tree and initialize the
16 devices in the board level.

In practice, it is necessary to write a test program to ver-
ify the functionality of the SPI device driver. Several com-
mand-line testing codes have been developed to verifying
read from ADC and write to DAC on a test board. These
codes are cross-compiled to ARM microprocessor instruc-
tion set and executed in the target system console. Testing
results show the modification of Linux kernel driver works
as expected and the analog IO has been successfully ex-
tended to 64 channels.

In order to access the ADC and DAC devices using the
IOC control software, the corresponding EPICS device
support routing need to be developed. The development in-
cluding coding for ADC and DAC device initialization
functions, implementing EPICS record initialization func-
tions, the record read/write functions, and registering re-
lated functions in the EPICS device structure. It is also nec-
essary to provide the device support routing in the "Device
Type" field in the device support file. All these routines are
written and transferred to the file system that runs on
AT91SAM9g20. Together with the IOC codes, EPICS
driver support routings are compiled using GCC on the tar-
get system. A loop test by connecting the DAC output back
to ADC has been performed. Multiple test results show that
the relative error between the set values of the DAC and
the reading values of the ADC are less than 0.4%. In such
a way, we have a conclusion that the SPI driver, as well as
the EPICS device driver, functions as expected.

Serial Communication with DSP
Stream Device is a wildly adopted EPICS serial commu-

nication driver in the past decade. It has been used in many
EPICS based accelerator control system, to establish com-
munication with intelligent power supply, vacuum gauge,
etc. Stream Device uses a file to storage predefined proto-
col, thus it is suitable to communicate with the various kind
of device. The protocol file is, generally speaking, both
static and predefined. In most cases, it is very suitable for
driving well defined serial devices. However, the DSP con-
troller of CYCIAE-100 cyclotron low-level RF system
takes advantage of a highly customized complex commu-
nication format to reduce dead-time of the real-time con-
trol. It is difficult to express the protocol into a static de-
scription. For example, the messages from the DSP con-
troller are divided into three categories: command re-
sponse, options menu list, and status information. The
command response has a fixed format and length. The op-
tions menu and running status information don’t, they de-
pend on the context and time. In total the low-level RF sys-
tem controller has up to 52 commands, including various
error reporting and status information. It is possible to do
the communication via Stream Device. Yet, in practices, it

will be complicated and tricky. Therefore, the Python script
is selected to implement the EPICS serial communication
with the DSP controller.

 Pyepics is the Python interface of the EPICS CA proto-
col developed by the University of Chicago. It uses the Py-
thon language to read and write EPICS PV via the CA pro-
tocol. The Pyepics operates through the EPICS base, per-
forms operations such as reading, writing and monitoring
EPICS PV by calling executable binaries including
“caget”, “caput”, and “camonitor” in the EPICS base. In
this case, it is necessary to compile the EPICS base in the
target OS using AT91SAM9g20 SOC. In the meantime,
Python, as well as the Pyserial extension runtime environ-
ment, should also be installed to the target embedded
Debian system. After setting up these software modules,
we can proceed with coding and verifying the Python de-
vice support routings.

The Python serial device support program is divided into
three separate threads. They are the Pyepics thread, the
reading serial port thread, and the writing serial port thread.
In the device support, we set up two queues. One of them
is to store the serial traffic. The other one is used to save
EPICS message data. The read serial thread read messages
from DSP, process it and translate it into EPICS PV access
requests. The requests will then be processed by Pyepics
thread. The Pyepics thread will also monitor the changes
of certain PV value. If necessary, the change will be fetched
to DSP by writing serial port thread.

Before putting into use, this EPICS serial driver is veri-
fied on the open-source hardware platform Raspberry Pi.
After the preliminary test, the program is migrated to the
embedded IOC. We found that, sometimes, a small amount
of DSP responses are omitted by the driver. After trial and
error, the cause of the problem is located. The response
data generated by the DSP for some commands are bursty
in nature. In limited time, a large frame of data can easily
jam the PyEpics thread. That will eventually make one or
two messages followed lost. To solve this problem, the Py-
thon regular expression is used to parse the DSP response
message. In this way, effective parameter extraction is
achieved. The difficulty of processing a sudden large
amount of data transmission is conquered.

OPI Interface
The graphical user interface in the CYCIAE-100 cyclo-

tron control room runs on multiple operating systems. It is
required that the remote OPI of Low-Level RF should able
to run on at least windows/ Ubuntu, and Macintosh OSX.
In the early stage, especially in the system development
phase, this OPI interface was developed using PyEpics and
PyQt frameworks. It can be considered as a fast prototype
for the development of IOC. Therefore, after commission-
ing of the cyclotron, in order to optimize and have better
performance, we use CSS to rewrite the OPI.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA165

Device Control and Integrating Diverse Systems
MOPHA165

627

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 3: OPI interface for the LLRF IOC.

In the new OPI, we use the LED animation to display the
switch status and use the text control to display the RF sys-
tem information such as the Dee voltage, Driven ampli-
tude, and phase, etc. Action button control as well as
Jython, Javascript is used to accept user input and make
change the PV value. For interlock process variables, the
trigger PV is used in the script. Standardized animation and
foreground/background color combinations are used to in-
dicate the system interlock condition. Figure 3 shows OPI
interface design.

CONCLUSION
This paper describes the technologies involves in the de-

velopment of an embedded IOC based on ARM9 series
processor, both from software and hardware aspects. The
reported system achieved the goal of collecting data and
implementing control using AT91SAM9g20 Soc. Special
Linux kernel driver and EPICS device driver was devel-
oped to enhance the feature of extended Chip Select decod-
ing. Python language is used to develop EPICS serial de-
vice support. The related EPICS database and operator in-
terface are also carried out.

This embedded IOC is developed in late 2013 and goes
online in early 2014. Together with the cyclotron LLRF
control, it has been put into continuous operation for 24/7
after the commissioning of the cyclotron on May 4, 2014.
Operational experience shows the design is stable and reli-
able. The embedded IOC was specially developed for the
LLRF system of CYCIAE-100 cyclotron, yet the technol-
ogy involved can be valuable for similar control systems.

REFERENCES
[1] Tianjue Zhang et al., “mA beam acceleration efforts on

100MeV H− cyclotron at CIAE”, Nuclear Instruments and
Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms, vol. 406, part A, pp. 250-255, Sep.
2017. doi:10.1016/j.nimb.2016.11.024

[2] Xiulong Wang et al., “The alternative of RF system design
for the 100 MeV cyclotron at CIAE”, Nuclear Instruments
and Methods in Physics Research Section B: Beam Interac-
tions with Materials and Atoms, vol. 261, nos. 1–2, pp. 70-
74, Aug. 2007. doi:10.1016/j.nimb.2007.04.233

[3] Zhiguo Yin et al., “RF control hardware design for CYCIAE-
100 cyclotron”, Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, vol. 801, pp. 104-107, Nov. 2015.
doi:10.1016/j.nima.2015.08.057

[4] Zhiguo Yin et al., “Digital control in LLRF system for CY-
CIAE-100 cyclotron”, Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 819, pp. 33-36,
May 2016. doi:10.1016/j.nima.2016.02.100

[5] Xiao-Liang Fu, Zhi-Guo Yin, Bin Ji, Zhen-Lu Zhao, Jun-Yi
Wei, and Tian-Jue Zhang, “An automatic phase-matching
technique of CYCIAE-100 cyclotron”, Nuclear Science and
Techniques, vol. 28, no. 9, p. 126, 2017.
doi:10.1007/s41365-017-0277-9

[6] Christian Gagneraud, “[PATCH RFC 0/3] AT91: SPI: Add pe-
ripheral chip select decoding”, Linux-arm-kernel mailing list,
31 May 2011.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA165

MOPHA165
628

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

