
CLOUD COMPUTING PLATFORM FOR HIGH-LEVEL PHYSICS
APPLICATIONS DEVELOPMENT ∗

T. Zhang† and D. Maxwell
Facility for Rare Isotope Beams, Michigan State University, East Lansing, USA

Abstract
To facilitate software development for the high-level ap-

plications on the particle accelerator, we proposed and pro-
totyped a web-based computing platform, the so-called
‘phyapps-cloud’. Based on the technology stack composed
by Python, JavaScript, Docker, and Web service, such a
system could greatly decouple the deployment and devel-
opment, that is the users only need to focus on the feature
development by working on the infrastructure that served
by ‘phyapps-cloud’, while the service provider could focus
on the development of the infrastructure. In this contribu-
tion, the development details will be addressed, as well as
the demonstration of developing Python scripts for physics
tuning algorithm on this platform.

INTRODUCTION
With the rapid evolution of information technology, the

development of high-level controls software in the accelera-
tor community has been dramatically changing. To apply the
most state-of-the-art technology to the accelerator controls
application development is like standing on the shoulders of
giants, the modern application could always be expected.

High-level physics controls software is to solve the prob-
lems regarding how to control the machine with some com-
plex physics tuning algorithms, could depend on complicated
physics model, or some generic data crunching routine. The
development of the high-level physics applications usually
requires a backend service running which can be treated
as the data source to the applications, including to accept
the input from the applications and to respond to the ap-
plications with output, such service typically is a so-called
virtual accelerator, which is driven by a speciic physics
model engine.

The data communication between the application and
virtual accelerator should be well abstracted, such that the
developed application can work with real accelerator rather
than the virtual one. For example, the implemented EPICS-
based [1] virtual accelerator is an IOC application, which
also exists in the controls network, the high-level application
should be able to work with either of them.

The conventional way to develop the high-level physics
applications usually requires the developer to install all the
required software in a Linux workstation or make use of
the well-packed VirtualBox [2] appliance in the VirtualBox
application in any host OS. At FRIB, all the requirements

∗ Work supported by the U.S. Department of Energy Oice of Science
under Cooperative Agreement DE-SC0000661, the State of Michigan
and Michigan State University.† zhangt@frib.msu.edu

have already been packaged into Debian packages, the de-
veloper can easily install all of them by ‘apt-get’ commands
on any computer running Debian 8 or 9 OS, and the develop-
ment work could start. While there is still the maintenance
overhead to keep the packages updated and troubleshoot the
coniguration issues. So, the web-based platform for physics
applications named as ‘phyapps-cloud’ was designed and
implemented [3].

Here is the signiicant advantage of ‘phyapps-cloud’. On
one hand, the users (the app developers and users) can do
the development in the web browser from anywhere, there
is no requirement for the development environment. On
the other hand, the platform developer can keep ‘phyapps-
cloud’ always updated, with little maintenance efort. By
utilizing Docker [4] to containerize the physics applications
development environment, the maintenance efort can be
further reduced. In this paper, the design, implementation
and use case of ‘phyapps-cloud’ is presented.

SYSTEM ARCHITECTURE
The designed architecture for ‘phyapps-cloud’ is sketched

in Fig. 1. Below lists the main components to compose
‘phyapps-cloud’:

• Gateway: REST web service features the main en-
trance of ‘phyapps-cloud’, and the center for the users
and services management;

• Configurable Proxy: Web service features conig-
urable proxy, which provides a way to update and man-
age a proxy table by REST API;

• Service-�: Private service created by the users, cur-
rently, two diferent services are supported, both fea-
tures with Jupyter-Notebook service and FRIB physics
application development environment, but one also
comes with the FRIB virtual accelerator service, while
the other does not.

The Configurable Proxy web service is maintained
by the opensource community [5], which is one part of the
JupyterHub project [6], while the others are developed at
FRIB as a byproduct of ‘phantasy-project’ [7], they are an
alternative method of deployment for physics applications
development based on web technology.

Gateway REST web app is developed with FLASK [8],
which is a lightweight WSGI web application framework for
Python [9]. It serves as the main portal where the user con-
nects to ‘phyapps-cloud’, as Fig. 2 shows. All the new users
can sign up for the irst time to get onto the platform, then

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA167

Software Technology Evolution
MOPHA167

629

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 1: Overview of the architecture of ‘phyapps-cloud’
platform. All the apps are Docker containers, man-
aged by Docker Swarm. The users can connect through
Configurable Proxy to the gateway, where all the pri-
vate computing services (Service-i) could be spawned.

each user could control their own computing service sup-
ported by ‘phyapps-va’ and ‘phyapps-nb’. ‘phyapps-va’ is
the Jupyter-notebook service with FRIB virtual accelerator,
and ‘phyapps-nb’ is the one without the virtual accelera-
tor. All the users should have the private space of Jupyter-
notebook environment to work with, if the virtual accelerator
is reachable, the user can test the EPICS controls physics
applications. The separated private space for each user is
implemented by containerizing the computing services by
Docker [4]. In fact, all the web apps including gateway app
and phyapps computing services, are packed with Docker
containers.

Figure 2: The index page of gateway web app, which shows
the brief information of ‘phyapps-cloud’, hyperlinks for other
operations, e.g. ‘Activity’ to show the current system usage
information by the registered users, and user login/sign-up
pages.

In the user workspace (see Fig. 3), the phyapps services
are distributed with a list of default Jupyter notebooks for
the convenience of the development, based on which, quick
demonstration could be expected. Once the container of
these phyapps service is updated, the user will be able to
get by restarting the computing service. As the ‘phyapps-
cloud’ platform maintainer, additional computing service
with diferent preinstalled Python packages could be created

and integrated, which indicates good extendibility. Currently,
all the phyapps computing services are preinstalled with
phantasy-project packages, one can develop applications
for FRIB driver LINAC while testing against the embedded
virtual accelerator.

If the target facility is not FRIB, a new computing service
is required to be created, i.e. to build another Docker con-
tainer image, within which, the new ‘phantasy-machines’
package for the target facility should be created, and since
the current virtual accelerator built for FRIB is based on
FLAME physics model [10], the target facility should be
able to model with FLAME, if not, additional work is re-
quired [7].

Figure 3: The activity page of gateway web app, which
shows the status of all users, click the ‘Notebook URL’ will
direct to the Jupyter-Notebook page for conducting the work
(as shown in 1©), while the phyapps service could be con-
trolled by clicking ‘Service Name’ hyperlink.

Currently, each user can only have one computing service,
if a new one is created, the old one will be overridden. The
computing service supports the operations like ‘Start’, ‘Stop’,
‘Pause’ and ‘Resume’. Also, the administrative account with
highest privilege is initialized when the gateway app is
started up for the irst time. The administrator is able to
manage all the user and computing service resources, the
details can be found in the project site of ‘phyapps-cloud’ [3].

DEPLOYMENT
To make ‘phyapps-cloud’ easy to deploy and make

the most of the clouding computing technology, Docker
Swarm [11] deployment mode is applied.

Docker Swarm is a clustering and scheduling tool for
Docker containers. Containers are isolated from one another
and bundle their own software, libraries and coniguration
iles, they can communicate with each other through well-
deined channels. Docker is a set of platform-as-a-service
(PaaS) [12] products that use OS-level virtualization to de-
liver software in containers.

As Fig. 1 shows all the components are Docker containers,
the ‘phyapps-cloud’ itself is a Docker Swarm stack. Swarm

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA167

MOPHA167
630

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



stack is managed by docker compose YAML coniguration
ile [13]. Before the deployment of the service stack, the
Swarm environment needs to be initialized to support other
nodes added as a worker into this swarm, thus, to scale the
entire stack [14]. After that, ‘phyapps-cloud’ platform could
be created on any Linux workstation by the following mini-
mal docker-compose YAML ile (see Fig. 4), the extended
version could be found from the repository of ‘phyapps-
cloud’ [3].

Figure 4: Docker compose YAML ile for ‘phyapps-cloud’
swarm coniguration.

To make the Swarm deployment painless, another
Makeile is created to handle all the macros show
in the YAML ile [15]. The inal deploy command
line is SRV_IP=<IP> make deploy, where <IP> is the
IP address or domain of the host workstation, say
10.20.30.40. Then the user can reach the platform by
visiting https://10.20.30.40:8000. Please note the
gateway is proxied by Configurable Proxy service.

The swarm service is easy to manage, by adding a few
lines to the compose YAML ile to make use the service
named portainer [16], which supports the platform main-
tainer to manage all the Docker containers in the nice web
UI. Any other containerized service could be added into the
swarm stack, too.

CONTAINERIZATION
gateway web app The gateway web app is a FLASK

app, with MySQL as the backend database to keep all the
data, to make it deploy within the Docker Swarm framework,
containerization is required.

The essential practice to make a Docker container image
is to produce the inal Docker image as small as possible,
such that, the container startup time and network traic re-
quirements will be reduced. All the packed containers are
pushed to Docker Cloud [17], where all published container
images are kept from developers around the world.

Figure 5 shows the Dockerile that is required by the build-
ing process, which will generate a Docker container image
with only 60 MB [18].

Figure 5: Dockerile for building gateway Docker container
image.

phyapps services The containerization for the phyapps
computing service is a bit complicated. First the container
so-called phantasy-base [19] is created based on the im-
age debian:stretch-slim [20], and then installing all the
physics applications software packages for Debian Stretch
OS, which have already been packaged for the develop-
ment at FRIB [7]. Then based on phantasy-base image,
phyapps:va and phyapps:nb are created, with the addi-
tional of the Jupyter-Notebook and virtual accelerator ser-
vice [21].

USE CASE
Once the Docker Swarm stack is running, users can con-

nect from the web browser. For the new user, register with
‘Sign Up’ form, then in the user page, new phyapps comput-
ing service can be created. Figure 6 shows the user has all
the control of the phyapps computing services.

Once created, the computing service can be started and a
new private Jupyter-Notebook workspace is ready for work
with, by simply clicking the ‘Notebook URL’ in the ‘Ac-
tivity’ page. Each user can only successfully be redirected
to their own service, since a secret TOKEN used as the
Jupyter-Notebook service authentication is generated when
the private container is created.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA167

Software Technology Evolution
MOPHA167

631

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 6: The User page of ‘user1’ in gateway app, where
‘user1’ can start a new computing service w/ or w/o FRIB
virtual accelerator service at LEBT, MEBT or LINAC seg-
ment.

In the Jupyter-Notebook workspace, the FRIB LEBT seg-
ment could be modelled with the live settings from virtual
accelerator. Firstly, the following scripts should output the
computing service information:

>>> import os, platform
>>> uname = os.uname()
>>> print("Hostname: {},
>>> System: {},
>>> Dist: {}".format(
>>> uname.nodename,
>>> uname.sysname,
>>> ' '.join(platform.dist())))

The output: Hostname: 9542a1bbf328, System:
Linux, Dist: debian 9.9, indicate that the running
container ID is 9542a1bbf328 (check by command
docker container ps), OS is Debian 9.9 Linux.

Then all the script that developed for online modeling
could be input for testing. For example, the following snip-
pet shows how to use phantasy to instantiate the whole
LEBT segment of FRIB virtual accelerator (machine name
is FRIB_VA).

>>> from phantasy import MachinePortal
>>> mp = MachinePortal(machine="FRIB_VA",
>>> segment="LEBT")
>>> lat = mp.work_lattice_conf

And pull the live device settings of virtual accelerator to
the model environment by lat.sync_settings(), then
run the FLAME model by path, fm = lat.run(), which
will output a tuple of generated FLAME lattice ile (path)
and the FLAME model object (fm) [7]. The FLAME model
object can be used to do further studies, e.g. show the beam
envelope by plot_orbit(('pos', 'xrms'), ('pos',
'yrms'), flame_model=fm), Fig. 7 shows the envelope
plot [22].

Figure 7: Online modeled envelope of LEBT segment of
FRIB virtual accelerator with FLAME.

The user can close the browser and resume the work at
any time later, all the work done in the Jupyter-Notebook
stays until the computing service is killed by the system
administrator. Multiple users can log onto ‘phyapps-cloud’
to do the work at the same time, to develop any machine
tuning algorithms with less efort.

CONCLUSION
In this paper, we present the details of a web-based cloud

computing platform for the physics applications develop-
ment for FRIB driver LINAC. The well-designed gateway
service is created to serve as the portal of ‘phyapps-cloud’,
from where, multi-users can log on to the Python script-
ing environment provided by a private Jupyter-Notebook
service, which includes the FRIB virtual accelerator and
preinstalled phantasy framework. All the developed ser-
vices are Docker containerized, composed Docker compose
YAML coniguration and Makeile iles to make the Swarm
stack deploy in just single line in any Linux workstation.
All the network access is managed by the conigurable http
proxy service, to make the whole system secure.

It is also worth mentioning that ‘phyapps-cloud’ swarm
could be deployed to the commercial cloud service providers,
e.g. Amazon AWS [23], Microsoft Azure [24], Google
Cloud Platform [25], etc. Since the UI of gateway web
app is developed with Bootstrap V4 [26], which is mobile
friendly, the users can still have a good user-experience in a
mobile devices like smart phone, tablet, etc., such kind of
machine tuning style would be truly the so-called accelerator-
control-in-the-palm.

ACKNOWLEDGMENTS
The authors would like to thank D. Chabot and M. Konrad

for useful discussions.

REFERENCES
[1] EPICS, https://epics-controls.org
[2] VirtualBox, https://www.virtualbox.org

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA167

MOPHA167
632

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



[3] GitHub repository of ‘phyapps-cloud’ project, https://
github.com/archman/phyapps-cloud

[4] Docker, https://www.docker.com
[5] Conigurable HTTP proxy, https://github.com/

jupyterhub/configurable-http-proxy

[6] JupyterHub project, https://github.com/jupyterhub
[7] T. Zhang et al., “High-level Physics Controls Applications De-

velopment for FRIB”, presented at ICALEPCS '19, NY,

[8] FLASK project, https://flask.palletsprojects.com
[9] Python, https://www.python.org

[10] Z. He et al., “The fast linear accelerator modeling engine for
FRIB online model service”, Computer Physics Communica-
tions , vol. 234, pp.167 - 168, 2019,

[11] Docker Swarm, https://docs.docker.com/engine/
swarm

[12] PAAS, https://en.wikipedia.org/wiki/Platform_
as_a_service

[13] Docker compose YAML ile, https://docs.docker.com/
compose

[14] Swarm initialization, https://docs.docker.com/

engine/reference/commandline/swarm_init

[15] Makeile for ‘phyapps-cloud’ deployment, https:

//github.com/archman/phyapps-cloud/blob/

master/Makefile

[16] Portainer project, https://www.portainer.io

[17] Docker cloud, https://hub.docker.com

[18] Docker image for ‘gateway’, https://cloud.

docker.com/repository/docker/tonyzhang/

phyapps-gateway

[19] Docker image for ‘phantasy-base’, https://cloud.
docker.com/repository/docker/tonyzhang/

phantasy-base

[20] Oicial site for Debian docker images, https://hub.
docker.com/_/debian

[21] Docker image for ‘phyapps’ computing service, https:
//cloud.docker.com/repository/registry-1.

docker.io/tonyzhang/phyapps

[22] GitHub repository of ‘lame-utils’ project, https:

//github.com/frib-high-level-controls/

flame-utils

[23] Amazon AWS, https://aws.amazon.com

[24] Microsoft Azure, https://azure.microsoft.com

[25] Google cloud platform, https://cloud.google.com

[26] Bootstrap 4.3, https://getbootstrap.com/docs/4.3

doi:10.1016/j.cpc.2018.07.013

USA, October 2019, paper TUCPR07, this conference.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA167

Software Technology Evolution
MOPHA167

633

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


