
GRAPHICAL USER INTERFACE PROGRAMMING CHALLENGES
MOVING BEYOND JAVA SWING AND JavaFX

S. Bart Pedersen, S. Jackson, CERN, Geneva, Switzerland

Abstract
Since Oracle has decided [1] to stop supporting Java

Swing and JavaFX in 2018, replacing Java as our language
for the development of graphical user interfaces has posed
numerous challenges. Many programmers in the CERN
Accelerator Sector will have to adapt and to be re-trained
in whatever the next technology will be. Performance of
the new GUIs will have to be at least as fast as the existing
ones. In addition, programming environment, code
versioning, repositories, dependencies and documentation
need to be considered as well when choosing the new
technology.

First, this paper provides an overview of the research
done by the software section of the CERN Beam
Instrumentation Group related to comparing GUI
languages and explains the reasons for selecting PyQt as a
possible future technology. Secondly, the basis for starting
a project in PyQt is defined as a guideline for programmers
and providing recommendations for the Python [2]
environment to be supported.

INTRODUCTION
The software section of the CERN Beam

Instrumentation Group (BI) has the mandate to implement
real-time servers in C++ that control and monitor
instruments developed for beam diagnostics located
throughout the CERN accelerator complex. These servers
are designed and implemented using an in-house software
framework called FESA (Front-End Software
Architecture) [3].

The section is also mandated to provide expert graphical
user interfaces (GUI) which until now have been
developed almost exclusively in Java. These GUIs allow
hardware experts easy access to their equipment for
parameter setting, signal visualization, error diagnostics,
calibration, data post processing and so on. This relies on
the underlying, low-level software architecture,
middleware (ex: Communication MiddleWare CMW [4])
and the various Java component libraries.

Due to the decision from Oracle to stop supporting Java
Swing and JavaFX in 2018, alternative software platforms
are currently being tested to replace Java for writing new
expert GUI applications. This gives us the opportunity to
plan for a good technological solution from a long-term
perspective, addressing new needs highlighted by the GUI
users, and the limitations identified in the current Java-
based solutions.

In defining what a good graphical interface should be, it
is important to differentiate between the choice of a
programming technology versus the functionalities and
performance of the resulting GUI. The user should be
presented with features similar to what is available with the

current Java implementations, whilst providing improved
performance if possible. A comparison of different
languages and a list of mandatory graphical functionalities
are essential to make a fair analysis and the right final
choice.

GUI USAGE AND EXPECTED
GRAPHICAL PERFORMANCES

Context and Usage
The main purpose of an expert GUI is to give access to

the hardware of any beam instrumentation system through
a FESA interface. The GUI is mainly targeted to hardware
or software specialists although these GUIs are sometimes
also used for machine operation.

Most expert applications are written in Java Swing and
more recently JavaFX with a few applications developed
with Qt (C++ and PyQt [5]). The applications only run on
the non-public technical network (TN) at CERN and,
thanks to Java, they execute under both the Windows and
Linux operating systems with the only difference being the
graphical rendering performance. Some experts have
expressed the need to run expert applications on other
platforms (mobile telephones, tablets...) and from the
CERN general public network (GPN). As it is, most expert
GUIs are only connected to FESA devices, but this could
be extended to direct access to low-level hardware in the
future, which means a direct connection to the hardware
driver. A handful of applications are already
communicating directly to the hardware through TCP/IP
and UDP using in-house protocols, but these applications
are rare. Interfaces to retrieve data both from the logging
database and from the LHC post-mortem data [6] files are
also available. Figure 1 shows all the different
communication links between an expert GUI or a Python
script and the hardware (HW).

Figure 1: Snapshot of the actual links between the expert
programs, the hardware and the databases.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA173

User Interfaces, User Perspective, and User Experience(UX)
MOPHA173

637

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Type of GUIs?
It is important to differentiate four types of expert GUIs:
1. Single driver, device or FESA class interface (with

get/set and subscribe modes) giving real-time data
snapshots.

2. Fixed display to show read-only (acquisition) data.
3. Advanced application either to combine the data,

status and setting from different FESA devices, or to
do data manipulation before displaying.

4. Other types of “non-FESA” applications i.e. using
direct TCP/IP or UDP connections to hardware.

Performances and Data Rendering?
An application should allow the user to be authenticated

and then to select the desired device (instrument), a
particular timing event and to provide the communication
interface to this/these server(s) displaying any log
information along the way. It should be made-up of
different panels containing functional components and
charts. At this level, a standard look and feel should be
available for the user, with programmers adhering to this
for all their new graphical interfaces.
Software performance should, in principle, be high enough
to keep up with the hardware. However, it is accepted that
this is not always possible or desirable, and hence can be
limited to a certain amount of data and to a maximum
update rate. Typically, an application should be able to
display:

- 1D array chart or table at 10Hz with 10000 points;
- 5 x 1D array charts or tables at 10Hz with 2000 pts;
- 2D array chart/table at 10Hz with 100x100 pts;
- 10 x 1D array charts or tables at 1Hz with 10000 pts;
- 4 x 1D array charts or tables at 1Hz with 100000 pts;
- 2D array chart/image/table at 1Hz with 512x512 pts.

COMPARISON BETWEEN
AVAILABLE TECHNOLOGIES

Java Swing
In order to prepare for the end of Java Swing and JavaFX

support, all JavaFX applications will initially be migrated
to Swing, with unused or outdated GUIs removed. Since
they are then sharing the same dependencies (using a single
Maven archetype), they will be adapted to the latest Java
project template structure in order to ease maintenance and
facilitate future migration.

QtQML
QML allows interfaces to be easily created from

documents with a JSON type format. Chart display
performance testing using random values were performed
for three different QML technologies: QML&JavaScript,
QML&C++ and QML&Python. Charts were tested using
QtChart.

The performance obtained with QML were found to be
very poor in all cases. In fact, it took several minutes to
create the charts, with constant application blockages and
a high consumption of CPU time and RAM.

Qt C++
Surprisingly, building a whole interface in this

technology is relatively easy, even without the use of
QtCreator, with numerous low-level mechanisms (memory
management, etc.) taken care of. The C++ API of the
CERN common middleware is also functional, and can be
easily integrated into a Qt application.

In terms of rendering, several plugins and widgets have
been tested. QPainter is the low-level drawing tool of Qt.
It served as a reference to benchmark other plugins.

Qwt is a popular library for plotting data with Qt. It is a
well-documented library. However, its setup and its usage
are both tedious and its performance is similar to QPainter.

QCustomPlot is another popular library. It comes with
less support than Qwt (no 3D plotting for example) but
outperforms it in all other aspects. Its integration and API
are simpler, and its performance is impressive: large graphs
with a million points can be displayed and used effortlessly.

Other drawing plugins are also available, such as
QtCharts. They may be good alternatives, but they were
not tested because the three plugins mentioned above
already provided a good overview of the capacity of
Qt/C++.

A pure C++/Qt GUI seems to be a very good option. It
has good performance (depending on the widget/plugin
used), and it avoids intermediary layers which can increase
memory usage and/or decrease responsiveness (as seen
with PyQt for example).

However, different problems make it difficult to adopt.
Firstly, the initial setup is difficult. One can struggle to find
the proper use of qmake with another programmer then
finding it difficult to link with the CMW library. Secondly,
it is not well documented. Finally, it is not easy to find new
(young) PyQt and C++ developers on the market.

Web Based Application
Many client-side and GUI developments have moved to

the web and to cloud solutions (SaaS). Thus, web solutions
have already evolved, and they could be a mature solution
matching CERN’s requirement.

A new approach using this technique is currently being
tested to provide a fixed display. This allows the real-time
display of acquisition data from any FESA server from
both the TN and GPN networks through a Tomcat web
server. The initial performance was seen to fulfill the
specifications.

Web interfaces are becoming more and more mature and
their portability are very interesting. However, their
graphical performance is still lagging behind
C++/Java/Python, and other issues like security still need
to be addressed.

Another alternative could be the use of a combination of
Python and a web framework like Django [7]. This solution
would allow us to automate the creation of the web
interface as well as all graphical components including
charts, and at the same time to include Python scripts that
can be executed automatically on the server side.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA173

MOPHA173
638

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

PyQt
Three different technologies combining Qt and Python

to do chart rendering have been looked at.
Mathplotlib is an old library with good performance. It

is easy to draw one single plot but difficult to include it in
an advanced GUI with multi-plot panels.

QtChart provides a set of easy to use chart components
that can be integrated into modern user interfaces. It can be
used for example as QWidgets. Users can easily create
impressive graphs by selecting one of the available chart
themes. It has very good performance, but some basic
functionalities such as zooming are not implemented. 3D
rendering is available but there is no 3D plot component.

PyQtGraph [8] is a pure Python graphical library built
on PyQt which is intended for use in
mathematics/scientific/engineering applications. The
library is very fast due to its heavy use of NumPy for
number crunching and Qt graphics for fast display.
Zooming, coloring, axes and units are present by default in
its components and 3D plotting is available.

PYTHON AND PYQT REQUIREMENTS
Python Distribution and Integrated
Development Environment (IDE)

A common distribution containing several Python 3.6
packages as well as some dedicated accelerator control
specific packages has been released at CERN. There are
still discussions ongoing about the IDE. QtCreator and
QtDesigner fit well for the design and implementation of a
GUI interface with Qt, but other frameworks such as
PyCharm are also being assessed.

Project Design and Template
It is foreseen that each programmer that needs to write a

new expert GUI should use the same project code template.
This template should be structured in a way that it can
separately handle:

the data interface (FESA, file, Logging database, Post-
Mortem…). An intermediate layer to manage both data
subscription for the different clients (mainly graphical
components) and the dispatching of the data is currently
being tested.

The graphical components. A nice way to standardize
GUIs is to share common graphical component libraries.

The models that do the control
Basic examples could also be included into this project

to simplify the implementation. Furthermore, scripts to
either release code, to obfuscate packages or to deploy
operational programs should make life much easier and
would strengthen standardization.

Repository and Versioning
Python code and “binaries” should be committed to a

standard repository. The same approach as for Java could
be followed for the versioning, i.e. source code to be
committed to Git and applications deployed under two

possible versions: PRO for production and DEV for
development.

Graphical Components
In order to structure the graphical components, three

levels and repository locations are proposed. The low-level
components composed of the basic graphical components
used by everyone (button, label, text field…). The
medium-level components that gather panels to be inserted
into the GUI’s main window. Some of them will already be
implemented and available for all GUIs, such as a data
viewer panel and timing panel. Finally, the high-level
components that mainly include frames and windows.

Qt Widget Architecture
All Qt widgets should be distributed into three different

layers. Every widget should contain the same Qt structure,
especially if it is a common interface to exchange data.

Naming conventions can also be used for every class,
variable and methods.

The design file (.ui file created with QtDesigner) and
interface can be used to create a graphical skeleton. It
should be possible to open the QtDesigner tool and to have
automatic access to these Qt widgets.

CONCLUSION
The software section of the CERN beam instrumentation

group already has an idea of the direction it will head
towards for future GUI development efforts. Web, Python,
and to a lesser extent C++ are all likely to be part of such
projects, with the use of Java already in steady decline.

The investigations into C++ did not bring about any big
surprises. It was already suspected that a C++ based GUI
would outperform its web, Python and even Java
counterparts. This was confirmed by the performance
figures which were very good especially using
QCustomPlot. Equally unsurprising was the significant
learning curve required for C++ developments, such as
understanding tools such as qmake, and the development
environment with the complex dependency requirements
for Qt and in-house libraries like CMW. Another problem
with C++ is the difficulty to hire adequately trained
developers and to find complete web documentation as
well as code examples.

Web technologies have already been demonstrated to
have a clear role in generic, fixed-display type
applications, but their extended use for fully-fledged
interactive applications is still not ideal. Nevertheless, we
see a bright future for the web interfaces combined with
Python.

The clear all-rounder from these investigations was
Python. The super-quick learning curve, enormous third-
party library base, and availability of GUI design tools
means that even a junior developer can make a small GUI
in a day or two. In terms of the needs for GUI building, the
performance of charting components was identified as
paramount. In the case of Python, there is a choice of
several technologies, with PyQtGraph standing out as the
best option. Some GUIs have already been developed

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA173

User Interfaces, User Perspective, and User Experience(UX)
MOPHA173

639

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

using this technology and it appears to tick all the right
boxes. On a more negative note, there are some doubts
about the long-term maintainability of Python code, with
more guidance for code structure and conventions required
at the institute level, similar to what is currently available
for Java. Likewise, the development lifecycle of Python
applications in general currently tends to be very ad-hoc
from one developer to another. Standardizing on IDE use,
versioning, dependency management, code structure, code
conventions, etc., are all things that need to happen, before
we launch headlong into making dozens of new Python
applications.

There is already a move away from JavaFX, with the
porting of old GUIs to Java Swing. We will attempt to
standardize on new Maven archetypes for Swing
applications, trying to standardize on high-level
components and structures as much as possible. When the
time comes to eventually move to the next GUI
development platform, we hope that this effort will pay
dividends, in that the porting will be more formulaic given
that all the applications should roughly follow the same
conventions. In parallel like-for-like Python applications
will be developed for some well identified Java GUIs to
gain experience with realistic Python GUI development.

OUTLOOK
Web technology has evolved rapidly over the last decade

and having simple but nice interfaces available in any web
browser to display and manipulate data is definitely
attractive. On-demand generation of HTML and JavaScript
web pages containing data from any location is already
common in the IT industry.

For several of our users such technology could respond
to their needs. This would include a client-server
mechanism made of a web interface provided by a server
in charge of finding, setting and processing data. This
server should be able to mix different languages to enable
Python scripts to be run to process data (Figure 2). The look
and feel and performance on the client side should only
depend on the architecture selected to generate the code. In
the end, everything regarding the interface can be
standardized and simplified with only the main data source
servers needing to be modified. We will soon start to
investigate the potential of this technology using the
Django framework.

Figure 2: Web interface combined with Java or Python data
source server.

REFERENCES
[1] Oracle Java SE Support Roadmap,

https://www.oracle.com/technetwork/java/java-
se-support-roadmap.html

[2] Python 3.6, https://docs.python.org/3.6/
[3] L. Fernandez et al., “Front-End Software Architecture”, in

Proc. ICALEPCS'07, Oak Ridge, TN, USA, Oct. 2007, paper
WOPA04, pp. 310-312.

[4] A. Dworak, F. Ehm, P. Charrue and W. Sliwinski, “The new
CERN Controls Middleware”, Journal of Physics Conference
Series, vol. 396, Dec. 2012.

[5] PyQt5, https://pypi.org/project/PyQt5/
[6] M. Zerlauth et al., “The LHC Post Mortem Analysis

Framework”, in Proc. ICALEPCS'09, Kobe, Japan, Oct.
2009, paper TUP021, pp. 131-133.

[7] Django, https://www.djangoproject.com/
[8] PyQtGraph, http://www.pyqtgraph.org/

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA173

MOPHA173
640

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)

