
adviewer: THE EPICS AREA DETECTOR CONFIGURATOR YOU 
DIDN’T KNOW YOU NEEDED ∗

Kenneth Lauer†, SLAC National Accelerator Laboratory, Menlo Park, CA, USA

Abstract
EPICS areaDetector connects area detector cameras to

plugin pipelines through the standard flat namespace that
EPICS provides. Visualizing and re-configuring this port
connectivity in AreaDetector can be confusing and - at times
- painful. adviewer provides a Qt-based interactive graph
visualization of all cameras and plugins, along with per-
plugin configuration capabilities and integration with an
image viewer. adviewer is built on Python, ophyd, typhon,
qtpynodeeditor, and Qt (via qtpy).

BACKGROUND
areaDetector

Each areaDetector [1] related device class from ophyd [2]
redresents a single ‘port’, i.e., a camera or plugin. All plugins
have a source port, indicating the location from which their
input data will be retrieved. Cameras do not have a source
port, as the information is sourced from a lower level (i.e.,
the C++ driver support).

To connect one camera to a plugin, one would need to set
the plugin’s source port to that of the camera. An ordered
set of camera and any number of plugins is referred to in this
document as a chain. A full configuration of plugins and
their corresponding cameras can be represented in several in-
tuitive ways, including as a directed acyclic graph comprised
of one or more chains, or as a tree in which the parent of an
item indicates its data source where a depth-first traversal
reveals the individual chains.

adviewer provides a graphical user interface with both
representations of detector configurations, an interactive tree
or graph.

areaDetector DEVICES IN ophyd
ophyd makes available many device abstractions from

the broader EPICS [3] community - from the motor record,
scalers, and so on. There is first-class support for areaDetec-
tor detectors and plugins.

Camera and plugin support is summarized in Table 1.
Support for unlisted cameras and plugins are welcomed in
the form of Pull Requests to the main ophyd repository [4].

Versioning
All ophyd devices can be versioned1 with user-provided

metadata at the device definition time. Versioning is done
in a class hierarchy, such that later versions are subclasses
of previous versions and are marked as versions of the base.
∗ Work supported by U.S. D.O.E. Contract DE-AC02-76SF00515.
† klauer@slac.stanford.edu
1 As of the v1.4 release candidate

Table 1: areaDetector Support in ophyd

Plugins Cameras
AttrPlotPlugin AdscDetectorCam
AttributePlugin Andor3DetectorCam
CircularBuffPlugin AndorDetectorCam
CodecPlugin BrukerDetectorCam
ColorConvPlugin DexelaDetectorCam
FFTPlugin FirewireLinDetectorCam
FilePlugin FirewireWinDetectorCam
GatherPlugin GreatEyesDetectorCam
HDF5Plugin Lambda750kCam
ImagePlugin LightFieldDetectorCam
JPEGPlugin Mar345DetectorCam
MagickPlugin MarCCDDetectorCam
NetCDFPlugin PSLDetectorCam
NexusPlugin PcoDetectorCam
Overlay PerkinElmerDetectorCam
OverlayPlugin PilatusDetectorCam
PluginBase PixiradDetectorCam
PosPlugin PointGreyDetectorCam
ProcessPlugin ProsilicaDetectorCam
PvaPlugin PvcamDetectorCam
ROIPlugin RoperDetectorCam
ROIStatPlugin SimDetectorCam
ScatterPlugin URLDetectorCam
StatsPlugin
TIFFPlugin
TimeSeriesPlugin
TransformPlugin

Users may select individual versions manually or program-
matically request the most compatible class with a specific
release.

This is especially of use for areaDetector as the PV inter-
face to each of the cameras and plugins has changed signifi-
cantly over the many releases from R1-9 through R3-7.

Cameras
Cameras in areaDetector generally differ from detector

to detector. ophyd provides a base class that all cameras
are derived from, along with individual cameras for each
detector.

Standard Plugins
The standard plugins provided in areaDetector ADCore

are all made available, based on a standard ‘PluginBase‘
class, separated by plugin class and versioned by ADCore.
As of the ophyd v1.4.0rc2, all listed plugins are supported
from areaDetectorR1-9-1 through R3-4, inclusive.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOSH1002

User Interfaces, User Perspective, and User Experience(UX)
MOSH1002

645

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Detectors
Detectors in ophyd aggregate one or more cameras and

one or more plugins into a device.

DETECTOR SPECIFICATION IN
ADVIEWER

adviewer provides two main interfaces for specifying a
detector. It allows for general discovery over Channel Access
(CA) with only a PV prefix, and also specification of a partial
or complete PV list from the IOC.

This "discovery" functionality is shown in Fig. 1.

Figure 1: adviewer: search over Channel Access by prefix
or use a PV list.

Discovery over EPICS Channel Access
With this method, the only required user input is

a PV prefix. That is, if a plugin PV such as
13SIM1:image1:ArrayData_RBV exists, the common pre-
fix would be only 13SIM1:.

For each ophyd areaDetector plugin, a regular expres-
sion is provided that indicates what a common plugin
suffix might be - as defined by the ADCore-provided
commonPlugins.cmd.

adviewer utilizes this by taking the user-provided prefix,
unrolling the common suffix expression to allow for multiple
plugins, and searching for a single known PV indicating the
plugin type (:PluginType_RBV) over Channel Access.

A similar method is used for the cameras, allowing for
adviewer to determine the make, manufacturer, ADCore
version, and camera driver version.

Discovery by PV List
For IOCs that do not follow the same convention as that

suggested by ADCore commonPlugins.cmd, adviewer also
allows for a PV list file to be specified.

The list is filtered to include only those that are likely
to be cameras or plugins. adviewer then reaches out over

Channel Access to determine camera and plugin versions
and availability.

Using the Camera and Plugin List
Once a detector has been specified by either a PV list or

a search over CA, there are several primary features then
available:

• Creating the Python code for an ophyd detector
• Configuring the connectivity of ports via a port graph

or tree
• Saving to a PV list
For the above, plugins may be removed from the full list

by selecting a checkbox next to the item. That would mean
that for a given unchecked plugin, it would no longer appear
in the generated Python code nor in the port graph.

CONFIGURING THE PORT GRAPH
The main port graph window includes both a port tree

and a graph, as pictured in Fig. 2.

Figure 2: adviewer: the port tree and graph.

Using the Port Tree
In Fig. 2, the left side represents the hierarchy of all plug-

ins using a tree. Each line is a single camera or plugin, using
the port name as defined by the IOC startup script.

As the configuration is available through EPICS, this tree
automatically updates as any client reconfigures a port chain.

The tree is interactive, allowing for dragging and dropping
of one port to another location. For example, one could de-
cide that an ROI is necessary prior to running some statistics,
and as such they might drag STATS2 to be under ROI2. The
plugin chain in text would be the following: SIM1 STATS2
ROI2.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOSH1002

MOSH1002
646

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)



Using the Graph
In Fig. 2, the right side represents the hierarchy of all

plugins using a directed acyclic graph. Each rectangle (node)
is a single camera or plugin, annotated by the unique port
name assigned to it. The direction is defined as from ”Out”
to ”In” on the nodes, or generally left-to-right.

To reconfigure a plugin chain, it is only necessary to click
and drag a new connection on the graph.

Right-clicking on a single port pops up a context menu that
allows for the configuration of any parameter on the plugin,
pictured in Fig. 3. For image plugins, it also allows the user
to spawn a user-specified (by default, a PyDM-based) image
viewer.

Figure 3: adviewer: view or change the settings of a plugin.

FUTURE WORK

Future work might include:

• Aiding PyDM to build out its image viewer
• Showing plugin settings in the graph nodes
• Showing preview images in the graph nodes
• Expanding on ophyd’s detector definitions
• Include a full image viewer directly in adviewer

REFERENCES

[1] areaDetector: EPICS software for area detectors,
https://cars9.uchicago.edu/software/epics/
areaDetector.html

[2] ophyd and the bluesky project,
https://blueskyproject.io/

[3] EPICS – Experimental Physics and Industrial Control System,
https://epics.anl.gov/

[4] ophyd repository,
http://www.github.com/bluesky/ophyd.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOSH1002

User Interfaces, User Perspective, and User Experience(UX)
MOSH1002

647

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


