
AN EPICS CHANNEL ACCESS IMPLEMENTATION ON SIEMENS PLCs
M. Boros†, R. Fernandes, European Spallation Source, Lund, Sweden

B. Péceli, G. Singler, evopro Innovation Kft, Budapest, Hungary

Abstract
At the European Spallation Source (ESS), a neutron re-

search facility in Sweden, most of the controls are based on
PLCs and layered in the following (traditional) way: field
equipment ↔ PLC ↔ EPICS IOC ↔ high-level applica-
tions. In many situations, the EPICS IOC layer will not im-
plement control logic per se and is only used for converting
PLC tags into EPICS PVs to enable the usage of high-level
applications such as CS-Studio, Archiver Appliance, and
Alarm System.

To alleviate this (traditional) way of doing controls, we
propose a simpler approach: implementation of the Chan-
nel Access (CA) protocol in the PLC layer for the latest
family of Siemens PLCs to remove the EPICS IOC layer.
We call it S7EPICS. S7EPICS respects version 13 of the
CA protocol specification, and supports multiple EPICS-
based client connections at the same time – e.g. CS-Studio,
Archiver Appliance – without a noticeable service degra-
dation (i.e. delays).

In this paper we introduce this implementation, its archi-
tecture and workflow, benchmarking results of tests per-
formed, and future developments that could be pursued
such as authentication & authorization mechanisms using,
e.g., the Arrowhead Framework.

INTRODUCTION
Integrating a Siemens PLC with EPICS [1] high-level

applications requires an EPICS Input/Output Controller, or
IOC, properly configured with EPICS modules capable of
communicating with the PLC using, e.g., s7plc-comms [2]
or OPC UA [3]. Configuring an IOC, even for small pro-
jects, demands EPICS programmer skills, time and other
valuable resources – e.g. a machine prepared to run the
IOC. In some (control) use-cases, it would be simpler and
more effective if the PLC could “talk” the Channel Access
(CA) protocol [4] itself so that it could be interfaced di-
rectly with high-level applications.

In this paper, we describe an open source PLC code
called S7EPICS [5], which allows a Siemens S71500 fam-
ily PLC instance to declare and handle EPICS Process Var-
iables (PVs) that EPICS aware applications may consume
directly without an actual IOC running.

S7EPICS is a PLC code implemented as a TIA Portal
library. When the library is imported into an existing TIA
project and it is called in the main PLC cycle, the PLC be-
comes a fully-fledged CA server capable of receiving and
sending EPICS CA protocol messages through UDP (to
discover producers – i.e. servers – of PVs) and TCP packets
(to exchange PVs data between producers and consumer –
i.e. servers and clients).

DESCRIPTION
Typically, a common control system scenario encom-

passes one or more field equipment that are con-
trolled/measured by a PLC. The PLC, eventually equipped
with I/O cards, is located in a control cabinet and field
equipment are connected to either the PLC CPU or to one
of its I/O cards. The business logic is implemented at the
level of the PLC, working as a self-contained and inde-
pendent (hard) control system. In addition, field equip-
ment’s signals – interfaced by the PLC – are usually con-
sumed by high-level applications to solve domain specific
issues.

In case of the (soft) control system is based on EPICS
(and consequently high-level applications too – e.g. CS-
Studio for OPI screens designing, Archiver Appliance for
signals archiving), the integrator has to create and config-
ure an EPICS IOC that 1) communicates with the PLC
CPU or its I/O cards and 2) “converts” the PLC tags into
EPICS PVs in a bidirectional communication. The IOC
does not implement any control logic though, and (only)
has as a main function to map PLC variables into corre-
sponding EPICS PVs. To implement this mapping, the ad-
dresses and, sometimes, the offsets of all communication
variables have to be specified in the EPICS IOC configu-
ration, which is time consuming and prone to error. More-
over, the IOC has to be maintained and executed on a
(physical or virtual) machine, adding an extra layer of com-
plexity to the control system as a whole. Figure 1 illustrates
the traditional PLC-EPICS integration involving an IOC
layer between the PLC and EPICS high-level applications.

Figure 1: Traditional PLC-EPICS integration. ___

† miklos.boros@esss.se

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOSH3001

MOSH3001
648

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

In contrast, when a PLC (of the Siemens S71500 family)
is equipped with the S7EPICS library, it is capable of both
answering PV name search requests and interchanging PV
data with EPICS high-level applications, making the IOC
layer redundant – assuming that the control logic is fully
respected/implemented by the PLC. Figure 2 illustrates the
(simplified) integration between the PLC and EPICS high-
level applications when using S7EPICS.

Figure 2: PLC-EPICS integration with S7EPICS.

Channel Access (CA)
The Channel Access (CA) is a communication protocol

that all EPICS aware applications need to implement in or-
der to communicate with IOCs or CA servers. A Process
Variable (PV) is the addressable unit of data accessible
through the CA protocol. Each PV has a unique name
which is served by a single CA server. A CA server main-
tains two sockets:

• An UDP socket bound to the CA port listens for PV
name search request broadcast messages. PV name
search replies are sent as unicast messages to the
source of the broadcast.

• A CA TCP socket listens an arbitrary port number. The
exact port number is included in the PV name search
reply. The socket is used to build a Virtual Circuit be-
tween a CA client and the server (upon the establish-
ment of a TCP connection among the two compo-
nents).

S7EPICS supports the CA protocol and was strictly im-

plemented according to the CA specification manual [4].
Moreover, S7EPICS was thoroughly tested with the most
popular EPICS CA clients (see subsection ‘Compatibility
with Existing EPICS Tools’ for additional details). To be
able to use the S7EPICS library the programmer has to call
S7EPICSMainCyclic block in a cyclic organization block,
e.g., OB1. The implementation of the S7EPICS library in
the TIA Portal is (succinctly) depicted in Fig. 3.

Figure 3: S7EPICS implementation in TIA Portal.

Declaring EPICS PVs
Declaring PVs in an EPICS IOC is done through the

specification of records that are stored in one or more .db
files – these are loaded in the IOC start-up script (i.e.
st.cmd file). Due to being a TIA Portal library, S7EPICS
declares PVs in a different way: instead of using the tradi-
tional record based declaration, S7EPICS implements a
dedicated PLC block called S7EPICS_DeclarePVs for de-
claring PVs. This block is composed of several input pa-
rameters that are used to specify the following PV fields:

• VAL (value of the PV in the selected DBR type)
• STATUS (is 1 for a normal, connected PV)
• SEVERITY (alarm state)
• UPPER_DISCR (upper discrepancy)
• LOWER_DISCR (lower discrepancy)
• UPPER_ALARM (upper alarm limit)
• LOWER_ALARM (lower alarm limit)
• UPPER_WARNING (upper warning limit)
• LOWER_WARNING (lower warning limit)
• UPPER_CONTROL (upper control limit)
• LOWER_CONTROL (lower control limit)
• EGU (engineering unit)
• TIMESTAMP (calculated from the PLC CPU time)

The S7EPICS code structure makes it easy to access PVs

across the PLC code since the index of the PV in the PLC
array is hidden – in other words, the PLC programmer may
refer to a PV simply by its name, not by its position in the
array, in the PLC business logic. For example, with S7EP-
ICS, to assign the value 12 to a PV called Cryo:SetPower
of type integer looks as follows:
"S7EPICS_PVs".PVs["S7EPICS_DeclaredPVs".
"Cryo:SetPower".PVArrayNumber].ValueDBRIntOrShort
:= 12;

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOSH3001

Device Control and Integrating Diverse Systems
MOSH3001

649

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Scalability
S7EPICS relies on certain (system) constants that users

may assign values to 1) configure the logic of the S7EPICS
(running in the PLC) properly and 2) scale the system as
whole according to (specific) needs (see Table 1). These
constants dictate the behaviour of S7EPICS such as the
UDP port to listen for PV name search request. The maxi-
mum allocated PV count and allowed client connections
are also configurable through these constants. Modifying
these constant values automatically allocates the necessary
memory in the PLC code (see Table 2).

Table 1: S7EPICS Constants
Name Default Value
EPICS_TCP_Send_Timeout T#3s
EPICS_Server_Port 5064
EPICS_Server_Version 11
EPICS_UDP_Server_Port 5064
EPICS_Max_PV 100
EPICS_Max_Client 16

S7EPICS can handle a maximum of 200 simultaneous

EPICS connections. This means that multiple CA clients
can be connected to the same port of the PLC. Channel Ac-
cess IDs like SID, CID, IOID and MonitorID are registered
by the S7EPICS PLC code for every client. Defining an
adequate value for the EPICS_Max_PV constant is crucial
to keep the PLC code at an optimal size.

Table 2: S7EPICS Memory Requirements
EPICS_ Max_PV Load Work Data

1 3 886 bytes 616 bytes
10 7 854 bytes 4 576 bytes
50 25 461 bytes 22 176 bytes
100 47 456 bytes 44 176 bytes
500 223 461 bytes 220 176 bytes

1000 443 460 bytes 440 176 bytes

Compatibility with Existing EPICS Tools
S7EPICS was methodically tested against widely used

EPICS tools and high-level applications such as caget, ca-
put, camonitor, CS-Studio and Archiver Appliance. Both
reading and writing of PV data between the S7EPICS (i.e.
CA server) and tools/high-level applications (i.e. CA cli-
ents) have been validated, and are correctly performed
among the two components.

EPICS bundled (console) tools caget and caput send a
[FIN, ACK] TCP signal before closing down the CA TCP
connection. Industrial PLC devices, such as the Siemens
S71500, have a different reaction implemented than what
caget/caput tools expects: when a PLC receives a [FIN,
ACK] signal it closes the TCP connection immediately,
which (unfortunately) makes these tools display an error

message. This behaviour, however, does not affect the suc-
cess of PV communication and data exchange.

CS-Studio registers DBR_TIME and DBR_CTRL mon-
itors for PVs. These monitors are fully implemented and
supported in S7EPICS.

Archiver Appliance reads PV fields like RTYP, SCAN
and NAME$. These fields are not part of the basic CA
fields; therefore, these need to be declared as new PVs,
e.g., [pvname].RTYP. Additionally, the programmer has to
make sure that new PVs are handled properly by the PLC.

Finally, to further validate the S7EPICS compatibility
with EPICS high-level applications, an existing IOC was
converted to the format of the S7EPICS_DeclarePVs PLC
block, thanks to a tool that reads an IOC .db file and out-
puts an external source .scl file for TIA Portal (generating
the same PV names and data types as declared in the .db
file). After the code was transferred to the PLC, the IOC
was stopped and the PLC using S7EPICS took its place.
CS-Studio successfully connected to all the PVs and the
same functions were accessible as with the IOC.

Performance
To evaluate the performance of the traditional PLC-EP-

ICS integration versus the alternative proposed in this pa-
per (i.e. S7EPICS), two tests were performed: in the first
test (A), a CS-Studio OPI screen reads PVs from an EPICS
IOC which, in turn, reads values from a PLC using s7plc
(in other words, PLC ↔ EPICS IOC (s7plc-comms) ↔
OPI screen). In the second test (B), the same CS-Studio
OPI screen reads PVs directly from a PLC using the S7EP-
ICS library (in other words, PLC (with S7EPICS) ↔ OPI
screen).

Both tests were performed using the same PLC (Siemens
S71516-3 PN/DP), business logic, CS-Studio (version
4.6.1.26), OPI screen, and with 100 PVs combining all sup-
ported data types, namely:

• SHORT/INT (16 bit signed)
• LONG (32 bit signed)
• FLOAT (32 bit single precision)
• DOUBLE (64 bit double precision)
• CHAR (8 bit single character)
• STRING (string)

The (key) parameter being studied in both tests was the

time required to load the OPI screen, measured between the
first UDP PV name search request sent by CS-Studio and
the last TCP response sent by IOC. To perform the meas-
urements, Wireshark [6] was used.

A tool called PLC Factory [7] was used to build the IOC
for test A. This tool, developed at ESS, retrieves the con-
figuration model from the Controls Configuration Data-
base (CCDB) [8] and generates (i.e. outputs) the following:

• ESS EPICS Environment IOC start-up (st.cmd file).
• EPICS record based declaration file (.db file).
• PLC external source code (.scl file) containing all the

necessary blocks (modbus block, TCP socket blocks
and array mappers) to communicate with the IOC.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOSH3001

MOSH3001
650

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

In test A, the communication time between the PLC and
the IOC was not considered due to the OPI screen loading
time being the phenomena of interest to measure. The var-
iable values were not important. Repeating test (B) with
different PLC loads showed that the response speed of
S7EPICS highly depends on the PLC free computation ca-
pacity available per cycle. The tests were performed under
a PLC cycle of approximately 2-6 milliseconds.

Under these conditions, the average result of performing
test A (EPICS IOC ↔ OPI screen) was 0.5352 seconds,
while for test B (PLC with S7EPICS ↔ OPI screen) this
was 0.5960 seconds.

IOT AUTOMATION WITH S7EPICS
The S7EPICS library is an effective solution to the in-

teroperability issue of turning PLC tags into EPICS PVs.
However, beyond interoperability, further issues arise
when dealing with large-scale control systems – such as the
one under development at ESS – that are organized in a
traditional, hierarchical (control) structure. In this last sec-
tion we identify some of the most acute issues and propose
a framework from the IoT Automation domain as a prom-
ising candidate to eliminate (or at least) mitigate those. The
aim of the discussion below is only to designate the direc-
tion of future work.

Considering the common specifications of large number
of I/Os, regularly changing experimental setup, various
communication protocols, etc., the following issues should
be tackled:

• User access management: proper authentication and
authorization of the operational and re-search person-
nel.

• Cyber security: machine-to-machine access manage-
ment.

• Interoperability: translation between data formats and
semantics.

• Scalability and flexibility: quick response times to
planned and unforeseen changes.

This listing resembles the main challenges of state-of-

the-art IoT Automation [9], which urges to make use of In-
ternet technology in order to come up with solutions ena-
bling the next generation of production automation sys-
tems. The Arrowhead framework [10] [11] is one of the
largest projects in the field. It proposes a service-oriented
control architecture (in contrast to the traditional, hierar-
chical approach) for industrial facilities with strict require-
ments on quality and security. Automation systems are or-
ganized into so called “local clouds”, which create secure
boundaries protecting the local automation operations from
any hazardous external activity (see Fig. 4). The local
cloud must implement mandatory core services (service
registry, authorization, orchestration) in order to become
self-contained and interoperable towards other Arrowhead
networks. Local clouds may interact with each other if lo-
cal servicing becomes inefficient or impossible. This fol-
lows the system-of-systems design principle [12].

Figure 4: Local Cloud with Arrowhead.

The Arrowhead framework does not break down legacy
protocols such as the EPICS CA, but move them into a
state-of-the-art, loosely-coupled, service-oriented environ-
ment. Consequently, there is a significant potential in inte-
grating EPICS-based automation operations at ESS with
the Arrowhead framework, bringing benefits such as ac-
cess management, security and flexibility.

FUTURE DEVELOPMENT
One of most important future development would be to

implement the array support for S7EPICS, which includes
handling long CA headers. The S7EPICS code already de-
tects array requests and long CA headers, but a proper reply
is not yet implemented.

Even if an EPICS IOC implements access security, cur-
rently, S7EPICS (and the traditional CA protocol) does not
implement system authentication & authorization. One
way to properly manage this matter could be through the
adoption of the Arrowhead framework.

CONCLUSION
S7EPICS is an open source PLC code, implemented as a

TIA Portal library, which enables EPICS high-level appli-
cations to connect directly to a Siemens S71500 family
PLC without an actual EPICS IOC mediating the two com-
ponents. Consequently, S7EPICS simplifies the control
system as a whole and, eventually, helps reducing its costs
and time to production.

The library may be instrumental for a (research) group
that does not possess (much) EPICS competences and/or
has substantial PLC development expertise, and when the
business (control) logic is entirely implemented in the
PLC.

To validate the S7EPICS library many tests were per-
formed. These have successfully demonstrated that the li-
brary is compatible with generic CA clients (e.g. caput,
caget, CS-Studio) and is capable of successfully handling
(several) thousands of PVs without putting an unmanagea-
ble load on the PLC. Finally, this paper also proposes a
software architecture based on the Arrowhead framework
to find a solution for next generation challenges.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOSH3001

Device Control and Integrating Diverse Systems
MOSH3001

651

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

REFERENCES
[1] EPICS, "Experimental Physics and Industrial Control Sys-

tem," 2019. [Online]. Available: https://epics-controls.org/
[2] E. E. Modules, "s7plc_comms EPICS module," European

Spallation Source. [Online].
[3] S. O. UA, "Siemens OPC UA," Siemens , [Online]. Availa-

ble: https://new.siemens.com/global/en/products/automa-
tion/industrial-communication/opc-ua.html

[4] E. community, "Channel Access Protocol Specification,"
2014. [Online]. Available: https://epics.anl.gov/base/R3-
16/0-docs/CAproto/index.html

[5] M. Boros, "S7EPICS BitBucket repository," 06 10 2019.
[Online]. Available: https://bmykeb@bit-
bucket.org/bmykeb/s7epics.git

[6] WireShark, "WireShark," [Online]. Available:
https://www.wireshark.org/

[7] G. Ulm, F. Bellorini, D. P. Brodrick, R. N. Fernandes, N.
Levchenko, and D. P. Piso, “PLC Factory: Automating Rou-
tine Tasks in Large-Scale PLC Software Development”, in
Proc. ICALEPCS'17, Barcelona, Spain, Oct. 2017, pp. 495-
500. doi:10.18429/JACoW-ICALEPCS2017-TUPHA046

[8] R. Fernandes†, "Controls Configuration Database at ESS,"
2017. [Online]. Available: http://accelconf.web.cern.ch/ac-
celconf/icalepcs2017/papers/tupha156.pdf

[9] J. Delsing, "Local Cloud Internet of Things Automation:
Technology and Business Model Features of Distributed In-
ternet of Things Automation Solutions," IEEE Industrial
Electronics Magazine, pp. 8-21, 2017.

[10] J. Delsing, IoT Automation: Arrowhead Framework, CRC
Press, 2017.

[11] Arrowhead consortium, "Arrowhead Framework," 2019.
[Online]. Available: https://www.arrowhead.eu/arrowhead-
framework [Accessed 15 August 2019].

[12] C. Keating, "System of Systems Engineering," pp. Engineer-
ing Management Review, IEEE. 15. 62 - 62.
10.1109/EMR.2008.4778760, 2003.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOSH3001

MOSH3001
652

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

