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Abstract
The operation of the LHC at CERN is highly dependent

on its associated infrastructure to operate properly, such as
its cryogenic system where many conditions must be ful-
filled for superconducting magnets and RF cavities. In 2018,
the LHC cryogenic system caused 172 hours of accelerator
downtime (out of 5760 running hours). Since the cryogenics
recovery acts as a time amplifier, it is important to iden-
tify not optimized processes and malfunctioning systems at
an early stage to anticipate losses of availability. The LHC
cryogenic control systems embeds about 60,000 I/O whereof
more than 20,000 analog signals which have to be monitored
by operators. It is therefore crucial to select only the rele-
vant and necessary information to be presented. This paper
presents a signal analysis system created to automatically
generate adequate daily reports on potential problems in the
LHC cryogenic system which are not covered by conven-
tional alarms, and examples of real issues that have been
found and treated during the 2018 physics run. The analysis
system, which is written in Python, is generic and can be
applied to many different systems.

INTRODUCTION
The LHC (Large Hadron Collider) at CERN (European

Organization for Nuclear Research) consists of eight 3.3 km
long cryogenically independent sectors with shafts to the sur-
face in between them. These shafts between two sectors and
associated infrastructure are denoted as points. Cryogenic
plants are installed in five out of nine points as illustrated in
Fig. 1 and together they cool down a mass of 36,000 tonnes
to a temperature of 1.9 K, making it the largest cryogenic
system in the world. This paper presents an analysis sys-
tem constructed with the purpose of detecting non-urgent
problems in the cryogenic system that are not caught by
conventional alarms and are difficult for operators to detect
manually. Archived data are analyzed daily by eleven differ-
ent analysis algorithms, after which reports for operators are
generated and published online.

The cryogenic plants are using similar setups which makes
automatic and coherent checks of the systems advisable.
The analysis is therefore distributed among eight VMs (Vir-
tual Machines), each analyzing one sector. Approximately
40 analysis jobs, together analyzing about 1000 signals, is
defined for each sector. The system is not replacing the daily
operator surveillance, but is helping the cryogenic opera-
tions team fulfilling its main objective of maximizing the
availability and performance of the LHC’s cryogenic system
by:

• Anticipating potential failures or loss of availability.

• Detecting unoptimized processes and malfunctioning
sensors.

• Prolonging the life span of equipment.
• Reducing the need for repetitive manual operator check-

ing and thereby freeing operator to other tasks.

Figure 1: Distribution of cryogenic plants in the LHC [1].

INFRASTRUCTURE
Each sector is set up to be analyzed by a dedicated VM to

ensure parallel and independent execution of new and updat-
ing analyses. These VMs are Linux machines that are set up
on CERN’s OpenStack. They are connected to a local ma-
chine using the software PuTTY©. New analyses are started
automatically through cron scheduling every night and are
performed on data spanning from the latest already available
results up to the most recent midnight. It is also possible to
redo a previous analysis with new parameters, and in that
case only the explicitly queued time frame will be analyzed.
This is useful when applying new or edited job specifica-
tions to dates which have already been analyzed. Triggered
warnings are ranked by how severely the thresholds have
been violated and are presented on a web site.

Python was chosen as programming language due to its
versatility. Its many available modules and wide functional-
ity gives great possibilities for easy expansion of the software
to other types of systems and analyses. It is of great signifi-
cance that the constructed analysis system can be adjusted
with small effort to other systems at CERN, such as the com-
puting cluster. At the time of construction, the necessary
signals from the cryogenic system are not accessible from
the computing cluster in a manner that it would make com-
putations faster or more reliable. This is set to change in the
future when the the currently undergoing change of primary
logging service will be completed. Python is very commonly
used at CERN and is therefore very probable to maintain
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Figure 2: Schematic over the technical infrastructure set up
to for the project and its work flow.

compatibility between system upgrades and to get early mod-
ule updates. At time of writing this paper, the service used to
obtain signal data is the CALS (CERN Accelerator Logging
Service) API (Application programming interface) wrapper
for Python called PyTimber [2]. CALS enables fetching of
signal data from CERNS’s LDB (Logging Database) to a
local machine. UTC (Coordinated Universal Time) is used
to avoid complications imposed by daylight savings time
and to simplify conversions to Unix time.

The results of the analysis are presented on a homepage
from which one can, depending on access level, perform one
or more of the following actions if one has a CERN account:

• View performed analyses and corresponding results.
• Hide warnings.
• Edit existing analysis jobs and create new ones.
• Queue reanalyzing.

The access level of the user is determined by using
CERN’s SSO (Single Sign On) service and looking up the
account name in a lists of access levels. The homepage is
hosted from CERN’s EOS (Elastic Organic Storage) file sys-
tem, which is a distributed file system accessible from all
VMs. EOS was therefore chosen as data storage to keep the
complexity of the system down. The EOS file system has
however shown to be unable to reliably handle sufficiently
many simultaneous requests and will ignore some of them if
overloaded. To avoid this issue, the analyses of the different
sectors are launched with a delay of fifteen minutes in be-
tween. The technical infrastructure and its internal relations
are illustrated in Fig. 2. The analysis jobs are categorized
by where in the cryogenic system they are applied. In the re-
sult presentation, the categories are sorted by the number of
new warnings and each warning shows a history of previous
occurrences to make it easy to spot new events.

ANALYSIS ALGORITHMS
The analysis algorithms are generic and can be applied

to any system that is generating signals which should relate
to each other or themselves in a manner similar to what is

described below. The generated warnings are sorted by their
urgency U = w ∗R, where w is the weight of the job (default
is 1) and R is a rank value which is computed differently
depending on algorithm, but always in a manner so that a
higher rank value correspond to a more severe violation of
thresholds. Unless stated otherwise, warnings are triggered
if R > 1, and threshold values are denoted as lim and are
set by input parameters.

For some of the algorithms, a triggering signal behavior
might not be an issue if there exists a non-problematic phys-
ical reason for the observed behaviour. In these cases, it is
possible to cross-check triggered warnings with causing sig-
nals. If a behavior that is expected to generate the triggered
warning is found in the causing signal, the warning will be
disregarded.

When something is stated to be given, it means that it is
set by input parameters. Most input parameters have default
values corresponding to its most common use case, imply-
ing that they do not have to be specified unless exceptional
settings are desired.

Family Analysis
Signals that are expected to have similar behaviour un-

der proper operating conditions are denoted as a family of
signals. The signals in a family analysis are analyzed by
comparison to other signals in the family. The same opera-
tions are performed on all signals. The specific signal that
is analyzed in a certain execution is referred to as the tested
signal and uses the subscript T . The remaining signals in
the family are referred to as the other signals and have the
subscript O.

Correlation The purpose of this algorithm is to detect
if a signal that is expected to follow others signals does
not do that. The algorithm checks this by comparing local
derivatives and assess if they differ significantly for a signif-
icant amount of time. The local derivatives are compared
within a partial time window of given length and if the rel-
ative difference between the local derivative of the tested
signal and the average local derivative of the other signals
is larger than a given limit, a violation count is increased
by one and a primary rank is assigned to the partial time
window according to Eq. (1), where V is the value of the
signals and t is time. If no violation is found for the partial
time window, a tolerance count is increased by one. The
partial time window is then shifted forward a given amount
of time and the comparison is made over. If the total length
of the violating time windows is longer than a given time
limit, a warning will be triggered. If however, the tolerance
count gets above a given limit, the violation count and tol-
erance count will be reset. If a warning is triggered, the
final rank will be calculated through Eq. (2) and Eq. (3)
where n is the largest number of partial time windows in
which the conditions have been violated without a reset in
between. The threshold limn is derived by calculating how
many window shifts has to be done and yield a violating
partial time window for the total violating time to be larger
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than a given limit. Equation (1) shows how the primary rank
for a specific partial time window is calculated by dividing
the difference between local derivative of the tested signal
and the average local derivative of the others, by the average
of the same two quantities. If n > limn, a secondary rank
is calculated by taking the average fraction by which the
primary rank condition was violated, over all primary ranks
in the set of partial time windows that triggered the warning,
N , as shown in Eq. (2).

R′
VT ,i = 2

������ dVT

dt −
dVO

dt

dVT

dt +
dVO

dt

������ (1)

RVT =

∑
i∈N

R′
VT ,i

n · limR′

(2)

R1 =
1
2

(
RVT +

n
limn

)
(3)

The final rank is then calculated by taking the average of
the secondary rank and the fraction by which the number
of violating partial time windows has breached its limit, as
described by Eq. (3). This analysis is applied to magnet
temperature regulating valves for detection of malfunction.

Amplitude Comparison This algorithm compares the
amplitudes within a family by their average value and op-
tionally their median value. The rank value is given by

R2 =


(
AT
AO
+

MAT
MAO

)
2∗(1+limdiff )

if median = True

AT

AO∗(1+limdiff )
if median = False

(4)

where A is the average amplitude and M A is the median
amplitude. The amplitudes in this algorithm are the y-axis
distance between every extrema and its neighbouring ex-
trema. High frequency oscillations will thus produce many
smaller amplitudes between all macro scale extrema and will
therefore make the macro behaviour of the signal irrelevant.
These oscillations can be adjusted for by calibrating the sam-
pling time. There is also the possibility to set a minimum
number of extrema detected for a warning to be triggered, if
slowly oscillating signals are not of interest. This algorithm
is applied to magnet temperatures as well as the valve posi-
tions and cold end temperatures of the DFB (Distribution
Feed Box) current leads.

Offset The function of this algorithm is to checks if
a signal is significantly distanced from other signals in its
family. This algorithm includes two methods to chose from.
Either it compares the average values of the signals, or it
compares the average distance to the other signals. The rank
is given by

R3 =
max(VT ,VO)

min(VT ,VO) ∗ (1 + limOffset)

where VT is the either the average value of the tested signal or
its average distance to the other signals, depending on which
method is utilized, and VO is either average of the other
signals average value, or the average distance in between
them. This algorithm is used to make sure that pressure
and temperature sensors that should have similar values are
coherent together. It is typically applied along cryogenic
distribution lines and series of magnets.

Span Comparison This algorithm checks if the span,
i.e. the difference between the largest and smallest value, of
a signal is significantly larger than the average span of the
other signals in its family. The rank value is given by

R4 =
ST

SO ∗ (1 + limdiff )

where S is the span. The algorithm is applied to magnet tem-
perature sensors and magnet temperature regulating valve
positions to detect abnormal behaviour.

Individual Analysis
These algorithms use thresholds depending on the values

of one single signal but warnings can be discarded depending
on data from other signals.

Slow Deviation This algorithm checks if a signal that
should have a generally flat appearance over time has a con-
sistent divergence in the evolution of the signal value. This
is done by fitting regressions to the data. A linear regression
is fit to the data initially. If the relative change δ is larger
than a limit limδ and the coefficient of determination r2 is
larger then a limit limr2 , a warning with a rank value given
by

R5 =
δ

limδ
(5)

will be triggered. If the linear fit does not trigger any warning,
the check is made again with a quadratic fit. The quadratic fit
is only performed in the case of no warning from the linear
fit to reduce the execution time. If a warning is triggered, the
signals can be cross checked with a causing signal to see if
the deviation is expected. E.g. if the pressure difference over
a filter slowly increases, it could be due to a clogging (which
would be a problem) but it could also be the consequence
of an increase in flow (which would not be a problem). The
comparison to a causing signal has a variable sensitivity
that is set by providing a maximal relative difference in the
relative deviations of the analyzed signal and the causing
signal. If a deviation of a size within the limits are found in
the causing signal, the warning will be suppressed. Beside
filters, this algorithm is applied to vacuum gauges (without
cross checking against any possible causing signal) to detect
vacuum degradations. The algorithm can be set to only
detect deviations in a specific direction or in both.
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Integral This algorithm determines whether or not a
signal significantly deviates from its mode (i.e. its most
frequent value). It does so by subtracting the mode value
from the signal and integrating the resulting curve. The rank
value is given by

R6 =
|I |

limI
(6)

where I is the integral value and limI is the largest allowed
integral size. The algorithm is applied to positions of magnet
filling valves and to flow meters to detect significant leaks.

Count This algorithm counts the number of value
switches, N , in a Boolean signal and checks if it is larger
than a limit limN . Its rank value is given by

R7 =
N

limN
(7)

and it is used to check how frequent the cryogenic condi-
tions for the magnet powering are lost and how often OnOff
valves are opened to re-pressurize the helium guards (the he-
lium guards are pressurized helium volumes located around
cryogenic systems of sub-atmospheric pressure to avoid air
pollution in helium circuits, so if these valves open too often,
it means that there is a significant leak).

Average This algorithm will trigger a warning if the
average signal value As is larger than a limit limu or smaller
than a limit liml . At least one of the limits has to be defined
and the rank value is given by

R8 =


As

limu
, if As > limu

liml

As
, if As < liml .

(8)

The algorithm is applied to thermal shield valves and tem-
peratures to detect reoccurring divergences from the design
value.

Daily Average This algorithm checks if the ratio be-
tween a signal’s daily average on two consecutive days is
above a limit limr . It is applied to vacuum gauges to detect
vacuum deteriorations. The rank value is given by

R9 =
Ad

Ad−1 ∗ limr
,

where Ad is the average signal value on date d.

Oscillation The purpose of this algorithm is to find un-
desired cyclic behaviour that might occur, for example, as
a consequence of a feedback loop. Work on this topic has
been conducted at CERN before [3], but tuning for the pre-
viously developed method has been shown difficult. Proper
tuning requires extensive insight in the working principles
of the measured quantities (e.g. typical valve movements,
noise levels, etc.). This new method is meant to optimize
the performance by limiting the scope of the algorithm. The

limiting of the scope is done by excluding the probing of
undesired high frequency oscillations. Since the system is
not designed to make high frequency changes, signals with
high frequency oscillations are deviating compared to its
family’s average behaviour and are therefore better probed
by the Amplitude Comparison algorithm which does not
trigger warnings for noise like oscillations present in the
family.

This analysis is done by performing a fast Fourier trans-
form and disregarding all frequencies of irrelevant amplitude
or wavelength. The longest relevant wavelength is consid-
ered to be the one resulting in two complete periods over the
analyzed time window and the shortest relevant wavelength
is zero by default but can be changed through an input pa-
rameter. Either an absolute or a relative (compared to the
signal average) amplitude limit has to be specified. The type
of limit is specified by its naming. After the selection of
relevant frequencies, signals corresponding to each of the
remaining frequencies are then generated and one at the time
cross-correlated to the original signal. If the magnitude of
the correlation coefficient between the pure oscillation and
original signal is greater than a given limit, a warning with
the rank value determined by

R10 =
A

limA
,

where A is the amplitude of the found cyclic behaviour and
limA is the tolerated amplitude, will be triggered. This al-
gorithm has the possibility to cross-check against a causing
signal as well. If a sufficiently similar cyclic behaviour (rel-
ative frequency difference below a given limit) is found in a
causing signal, the warning will be suppressed. There is also
a possibility to set a minimum number of mean crossings for
a warning to be triggered, to avoid triggers by quasi-cyclic
signals triggering a warning (e.g. y = x + sin(x)). This al-
gorithm is used to monitor the stability of helium pressures
in cryogenic distribution lines.

PID Performance Analysis
This analysis is neither an individual nor a family analysis.

It includes a set of signals that have a specific relation to
each other but are not expected to have similar behaviour
under optimal operating conditions, i.e. they are related but
are of different families. It is used to detect poorly tuned
PID (Proportional–Integral–Derivative) controllers and can
be applied to all of them as long as signals for the controller
output, the setpoint and a measurement of the controlled
variable is available. It does not suggest how to tune it prop-
erly, it is only pointed out that it might need re-tuning. The
algorithm is largely an adaptation of a concept already ap-
plied to LHC’s cryogenic system, but through a different
infrastructure [4]. The analysis is performed on partial time
windows of a given size, and if the number of partial time
windows in which the conditions are violated, n, is larger
than a limit limn when the full time window has been ana-
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lyzed, a warning ranked according to

R11 =
n

limn

will be triggered. The main difference between the original
function and this adaptation is that the former only counts
the consecutively violated partial time windows whereas the
latter counts all violations. The only other change is that
the PI (Predictability Index) is capped at one by setting all
values larger than one to one. In the original function a value
larger than one was improbable but possible. This algorithm
has a dedicated plotting function to show all relevant data.

Figure 3: PID controller data that have triggered a warning,
plotted by the dedicated plot function.

An example output of the dedicated plot function is shown
in Fig. 3. The shown example is a benchmarking case with
a clear oscillation of MV (Measured Value) and OUTOVST
(controller output) around SP (the setpoint) as illustrated
in the top subplot. From these signals, the PI values (pre-
sented as PID performance) in the middle subplot are de-
rived, which all are below the threshold indicated by the
horizontal line. This, together with the fact that the actuator
in question is constantly requested to move, which is easiest
seen in the bottom sub plot, suggests that the tuning of the
controller is poorly done.

BENCHMARKING
To benchmark these different analysis algorithms,

archived data from 2018 has been analyzed. When a date
is stated to be benchmarked for, it means that data running
up to the last second of previous day is analyzed. All of
the benchmarking issues were found by the software and
previously undetected issues were detected as well. The
Correlation algorithm lacked a real case to compare to and

was therefore benchmarked against synthetic cases. The
Correlation, Daily Average and Oscillation algorithms were
shown to be difficult to tune to avoid an abundance of false
triggers. Since false triggers bloat the presented data and
lowers the perceived significance of warnings, and the pur-
pose of this software is not to warn about urgent issues (since
these should be covered by conventional alarms), these three
algorithms are currently tuned in a manner which yields no
warnings when running on the benchmarking data. I.e. the
cases which they have been tested against are not distinct
enough to be found by settings that does not also yield many
false triggers.

Previously Undetected Issues
Most prominent of the previously undetected issues were

problems regarding valves with broken electronic compo-
nents.

Figure 4: Broken valve electronics was replaced on July
18th 2018. The Issue was detected for the first time by the
Amplitude Comparison algorithm during benchmarking and
was ranked through Eq. (4).

A total of six instances of this issue were found, all of
which were from similar families (valves in DFB current
leads) but in different sectors. They were detected by the
Amplitude Comparison algorithm because the valves were
constantly going up and down with length significantly larger
than the noise that tend to be present in these signals, thus
yielding a significantly larger average amplitude compared
to its family members. An example of this is shown in
Fig. 4 where the average amplitude of the tested signal (the
initially thick one), AT , was calculated to 2 and the average
amplitude of the other signals, AO, was calculated to 0.5.
The limit value limdiff = 0.6 corresponds to allowing an
AT 60% larger than AO, thus implying an upper threshold
of 0.5*(1+0.6)=0.8 for AT . Since the calculated value for

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-THCPL05

Data Analytics
THCPL05

1605

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 5: Degradation of primary vacuum found during
benchmarking of the Slow Deviation algorithm. The issue
was ranked through Eq. (5).

Figure 6: Internal leak on magnet bath detected by applica-
tion of the Integral algorithm on a flow meter. The rank of
the warning was calculated by using Eq. (6).

AT was 2.5 times larger than the threshold, the job yielded
a rank value of 2.5 and triggered a warning. The effect of
replacing the broken electronics can be seen clearly. After
some overshoot, the valve converged towards its family and
started to regulate properly with an average amplitude similar
to the other family members.

Figure 5 illustrates an example of an issue found by the
Slow Deviation algorithm when analyzing for November
29th 2018. The pressure in the primary vacuum is not at
an alarming level in any specific moment and neither is the
local rate of change, but when observing at a longer time
scale, a linear regression (dashed diagonal line) can be well
fit to the data. The linear regressions show a consistent
degradation of the vacuum (i.e. a leak) that has caused a
pressure increase of approximately 30% over the span of
28 days. This increase is three times larger than the limit
limδ = 0.1 and thus yields a warning with the rank value 3.

Figure 6 shows an issue detected by the Integral algorithm
when analyzing for November 25th 2018. The warning was
triggered from an instance in which it was applied to helium
flow meters to detect potential leaks in magnet baths. The
y-axis represents grams per second and the x-axis represent
seconds, which means that integration will give the accu-
mulated mass flow in grams over the integrated time frame.
The mode value is marked by a dashed horizontal line and
is subtracted from the signal values before integration. The
limit was set to be 7 kg of helium over 24 hours, so when the
integration showed that the accumulated helium flow over
the day was approximately 83 kg larger than what the mode
value would have given, a warning of rank value 11.9 was
generated.

Figure 7: Leak issue in the helium guards detected by the
Count algorithm. The warning was assigned a rank value
according to Eq. (7).

A leak in a helium guard was detected by the Count al-
gorithm when applied to the guards’ OnOff valves in anal-
ysis for November 15th 2018. The triggering valve signal
is shown in Fig. 7 where it can be seen to open and close
six times within a week (thus changing value twelve times)
which is alarmingly often.
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Figure 8: Thermal shield valve operating close to saturation
after a reconfiguration and therefore not regulating properly.
The issue was detected by the Average algorithm and the
rank value was calculated through Eq. (8).

A poorly regulating thermal shield valve was detected by
the Average algorithm when analyzing for November 18th

2018. The issue is shown in Fig. 8 where the average signal
value is observed to be at the saturation level of 8%. The
lower limit for the average was set to 10%, which is 25%
more than the observed value, a warning with a rank value
of 1.25 was therefore triggered.

CONCLUSION
The software is ready to be used for the LHC run 3, but

tuning of settings will be an ongoing process since more
data to tune against is gathered as the system is running.

All of the eleven algorithms have been conceptually vali-
dated, three of which have shown to be difficult to tune in an
adequate manner. In the cases of tuning difficulty, removal
of false triggers have been prioritized over detection of real
issues since bloating of the result data would disintegrate
the purpose of the software.

Oscillations are present in the data and they can be found,
but when cross-checking with causing signals all potential

warnings get suppressed. The hardship in tuning the Oscil-
lation algorithm could thus be a consequence of there being
no problematic oscillations in the data (except the high fre-
quency ones that are covered by the Amplitude Comparison
algorithm).

One of the two methods of the Offset algorithm is currently
unused (the one comparing averages), but it is kept due to
potential future applications.

A typical day generated on average 40 warnings per sector,
of which 3 were new. The analysis of one sector took on
average approximately 48 minutes, of which 30 minutes
(63% of the elapsed time) for the fetching of signal data.

Among the valves with broken electronics, one had been
oscillating in the manner shown in Fig. 4 since the year 2014,
which is a good indicator of how hard it can be to detect this
kind of problem through the use of conventional alarms and
manual inspection. The fact that all six valves with broken
electronics were of the same type suggests that it should be
investigated if a systemic problem is causing the issues.

A new system for fetching of signal data is being devel-
oped at CERN and PyTimber will therefore be phased out.
A separate version of the software has been constructed to
utilize the new system. When the new system is ready, shift-
ing to the adjusted version of the software is done by doing
minuscule updates to the cron jobs.
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