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Abstract
Continuous Integration (CI) is widely used in industry,

especially in the software world. Here we propose a com-
bination of CI processes to run firmware and software tests
both in simulation and on real hardware that can be well
adapted to FPGA-based accelerator electronics designs. We
have built a test rack with a variety of hardware platforms.

Relying on source code version control tools, when a de-
veloper submits a change to the code base, a multi-stage
test pipeline is triggered. Unit tests are run automatically,
bitstreams are generated for the various supported FPGA
platforms and loaded onto the FPGAs in the rack, and tests
are run on hardware. Reports are generated upon test com-
pletion and notifications are sent to the developers in case
of failure.

OVERVIEW

FPGA-based accelerator instrumentation is based on the
coherent design of firmware, controls software, hardware
and communication links in between. All those layers are
usually not static entities but continuously evolve to provide
more features or improve performance. In addition to this
coherence problem, FPGAs are becoming larger and more
complex and, as software, firmware designs follow a fairly
complex layered approach in themselves.

In this paper we describe some of the practices we have
found useful at Berkeley based on common version control
tools and CI setup. Adopting these processes was a reward-
ing experience and proved easier to deploy than it seemed at
first. It has facilitated the task of developing complex, lay-
ered designs where these layers are tightly coupled and need
to be tested in conjunction [1]. When one of us is working
on a particular layer in the design and commits a change in
version control, the CI setup automatically runs unit tests,
builds FPGA bitstreams and runs fully integrated tests on
hardware, verifying that the entire design works as expected
as a whole.

Although, we have been using version control software
and been writing several tests for our firmware and software
designs, testing on the bench, or updating firmware on de-
ployed electronics usually involved verifying many changes
all at once. With the CI process in place, not only can we
catch failures more often but the process is automated and if
something goes wrong after committing a change the devel-
oper who made the breaking change is setup to be notified
by email.

∗ This material is based upon work supported by the U.S. Department of
Energy, Office of Science, under Contract No. DE-AC02-76SF00515.

† CSerrano@lbl.gov

MOTIVATION
While our group in particular handles specific technical

challenges and integration issues [2], the general develop-
ment processes can be extended to those in other fields of
accelerator instrumentation. Those include:

• Growing complexity of multi-layered designs.

• Issues related to interconnection of design layers and
overall coherence and integration.

• Collaborative development among organizations where
different groups, sometimes in separate institutes, are
responsible for layers within a common design.

• Lack of quality assurance and automated testing pro-
cesses.

Continuous integration is a development practice used
to prevent integration problems while modifying a small
part of a larger design. Industry practices have in the past
forced developers to run unit tests locally before commit-
ting changes to shared repositories. Today, this process has
been widely adopted and some of this tedious testing and
verification steps have been streamlined and automated.

Automated verification and continuous integration prac-
tices become particularly important when dealing with com-
plex systems with many integrated parts, especially when
multiple groups work together on a design or parts of those
designs are shared among different projects.

The issues related to design complexity are not at all
unique to accelerator instrumentation but are in fact com-
mon in electronics and software industries [3]. However,
instrumentation and controls groups in accelerator facilities
usually lack solid development process and quality control,
let alone automated testing processes.

Deployment is also a very important step in accelera-
tor electronics, usually carried our by software controls
groups who have more established release and deployment
processes. A usual example of integration difficulties en-
countered in accelerators is guaranteeing the coherence be-
tween FPGA firmware designs and their associated software
low-level drivers and high-level applications. If an FPGA
designer adds or removes a feature-or even renames a regis-
ter that is expected by controls software-there needs to be
a process for those parts of the design to stay in sync. CI
processes help facilitate those steps by testing the entire sys-
tem as a unit and by providing "artifacts" readily available
to all parties. These artifacts can be FPGA bitstreams or
software executables which are automatically generated by
the CI tools every time a developer submits code changes.
These artifacts can be set to be deployed automatically as
well.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-TUAPP01

Hardware Technology
TUAPP01

659

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 1: Hardware and software CI flow.

In the following sections we dig deeper into how these
processes have been established at LBNL and provide some
details on our specific implementation. These concepts can
be applied to other needs and implemented using different
tools or frameworks.

CONTINUOUS INTEGRATION
Continuous integration (CI) builds upon the strengths of

Version Control Systems (VCS) to create a more efficient
and robust development flow. Version control facilitates
the collaboration between multiple developers working on a
common code-base by providing a means to merge, revert
and compare changes. However, errors introduced inadver-
tently can go unnoticed for multiple revisions, which can
have a compounding effect and greatly increase debugging
effort. Moreover, as systems grow in complexity, it becomes
more challenging for a developer to anticipate what side-
effects his/her changes might have elsewhere.

The use of CI mitigates these issues by introducing a
quality assurance (QA) step that is automatically triggered on
every commit, in the form of a suite of checks and tests that
aim to quickly measure the impact of the change being made.
This early feedback makes it easier to identify functional
regressions and address them before they’ve propagated.
Additionally, the inclusion of code quality and style checks
in the automated test suite can be an efficient way of keeping
the quality of a codebase high.

It is important to note, however, that the benefits reaped
by employing CI will only be as good as the automated test
suite it is using. Therefore, the first step towards the effective
deployment of CI in a development flow is to carefully plan
and create a collection of tests that adequately capture both
the individual and integration requirements of the various
building blocks of the project.

Creating a Test Suite
While it is important to be mindful of the overall execution

time of a CI test suite, there is no real limit to what it can
encompass. Indeed, any check or test that can be reduced to

a well-defined sequence of steps and be made to return an
appropriate exit status is a candidate. Despite how flexibly
tests can be defined, it is advantageous to have a build system
in place, such that common build, test and run steps can be
triggered with a single-command. Having access to this
capability greatly simplifies the creation and management
of a CI pipeline.

Individual tests or checks within a CI suite are typically
referred to as jobs. What follows is an example list of the
types of jobs that we have successfully integrated into our
automated testing pipeline:

• Run linters, such as Python PEP8 compliance checking
for code readability

• Verilog linting checks with Verilator [4]

• Compilation of Verilog source code with Icarus Ver-
ilog [5] and Verilator

• Running of self-checking testbenches

• Synthesis of HDL with Xilinx Vivado

• Bitstream generation and timing closure checks

• Live hardware tests on a wide range of FPGAs

In addition to pass or fail results, individual jobs can be
configured to store artifacts, consisting of arbitrary collec-
tions of files generated during its execution. This can be a
very useful way to archive the results of long-running pro-
cesses, such as FPGA bitstream generation, as well as to
keep detailed logs of hardware tests for later triage/analysis.

Finally, it is important to note that the definitions of the
CI suite and pipeline are files that are themselves kept in
revision control. This means that any improvements and
changes made to the testing process can be reviewed, merged
and reverted just as any other piece of source code.
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Architecture
The architecture of a CI system (as shown in Fig. 1) can

be as simple or as complex as the project it is being used
with. As an area of active interest, especially in the software
development industry, several technologies and tools exist
that address and enhance the various parts that make up such
an automation system. These vary greatly in complexity,
ease-of-use and learning curve but, in its essence, a modern
CI environment can be distilled down to three basic elements:

• A CI Server that monitors a version-controlled code
repository for changes

• A dependency management system

• A “runner” that executes the tests and reports their
status to the CI server

Whenever a developer commits a code change to the
project repository, the CI server is initialized. After ob-
taining a complete snapshot of the updated codebase, it must
prepare the environment in which the tests that comprise the
CI pipeline will be run.

This step is especially important because it allows tests to
be run in a deterministic environment that doesn’t change
over time and greatly contributes to the reproducibility of re-
sults. This is in contrast with tests that are manually initiated
by developers in their own machines, where different tool
versions or local untracked changes may exist, thus affecting
the results in unexpected ways. The ability to explicitly and
uniquely specify the dependencies and environment used by
the CI test suite is therefore key to maximizing the benefits
such development flow can bring. Here, too, multiple soft-
ware offerings exist that help tackle this challenge, typically
involving a form of containerization, where a full runtime
environment is generated on demand.

Once the environment is initialized, a “runner” process
takes over and starts executing the test suite. Related tests
can be aggregated in stages, within which, the jobs running
each test may progress in parallel. Later stages depend on
earlier stages completing successfully, creating a dependency
system that can be leveraged to organize the pipeline in an
increasing degree of complexity and execution time, so that
bad commits fail as early as process in the process, saving
test cycles and reducing feedback times.

The “runner” may be run on any network-accessible server
machine. We have found containerization (e.g., Docker, ch-
root) helpful for documenting and isolating the tools and
their valid versions. Also, such containerized processes can
easily be run on any machine, independent of its native soft-
ware environment. A notable exception occurs when the CI
pipeline includes tests that require direct interaction with
specific hardware devices that are not, or cannot be accessed
from the normal network. In such cases, the “runner” nec-
essarily runs on the properly hardware-connected machine.
Security concerns often mandate such a setup even when
the devices under test are Ethernet-connected, so they can
be kept isolated on a private network,

DEVELOPMENT & VERIFICATION
FLOW

Simulation is always an essential part of FPGA devel-
opment. Along with HDL code, testbenches get written,
starting with simple unit tests. Our CI framework builds on
that reality, starting with the mandate that developers not
only write testbenches such that the waveforms look right,
but also produce a PASS/FAIL result. These testbenches
can become stricter with time and experience.

Our Verilog-centric experience involves mostly Icarus
Verilog run from GNU Make. This “make checks” step is
then easy to encapsulate in a CI environment running shell
within Docker, so that these tests are accumulated and run
systematically.

Firmware on the FPGAs pretty much never runs in isola-
tion. When it interacts with software, it’s important to simu-
late the two together, a process often described as hardware-
software co-simulation. Techniques vary, depending on the
communication framework between the FPGA and software.
When the software runs on a soft core inside the FPGA, or-
dinary HDL-style simulations can work without conceptual
modification. Compilers are added to the required infras-
tructure, and the binary output gets loaded by the simulation.
In contrast, programs running remote to the FPGA normally
need a simulation of the data transport channel. Then the
software can run either natively or in a dedicated emulator.

Our experiences cover RISC-V [6] soft cores, and C and
Python running on external computers. Ideally, most of
the application HDL code and software is independent of
the transport channel, so the simulated transport can be
somewhat generic. Much of our transport experience is with
an on-chip Ethernet/IP/UDP stack that directly attaches to
a hardware PHY; a simulation of that attachment can be
bridged to a workstation or CI server operating system with
the tun/tap framework, allowing full (but slow) emulation
of the final chip.

The transition from usual software-based testbenches to
tests that involve real hardware now seems natural. Certainly
developers are used to interacting with live hardware on the
bench. Just like the unit-test case, we add a mandate that the
developer’s experience gets transformed into PASS/FAIL
tests that can be refined and accumulated. On the CI side,
the infrastructure now includes a toolchain for the FPGA,
and tools for downloading bitfiles to the board(s). This last
CI stage is now constrained to run on a physically known
computer in the lab attached to the hardware made available
for such testing, rather than some abstract software-only
server that could be “in the cloud.”

LLRF Applications
The power of CI is instrumental in our development of

high-quality shared code that is used by multiple LLRF
applications. Library code changes can be made with the
confidence that every project using the shared sources will
continue to function as designed. Fig. 2 shows a test rack
at LBNL where LLRF systems for different projects coex-
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Figure 2: CI rack.

ist: LCLS-II (SLAC) [7], SNS/PPU (ORNL) and PIP-II [8]
(FNAL).

The same rack also includes the networking and optical
fiber equipment needed for inter-chassis and control system
communications. In order to run hardware in the loop tests
for LLRF applications, a hardware cavity emulator is used.
The cavity emulator is essentially a crystal with similar band-
pass characteristics as a resonant cavity used in accelerator
(though with a wider bandwidth); it allows us to complete
tests using the same cavity bring up automated scripts that
are deployed in the accelerator.

SOFTWARE INFRASTRUCTURE
Dependency Management with Docker

We use several open source tools and some vendor spe-
cific closed source tools in our development workflow. Some
of the open source tools are fairly stable like Python, Icarus
Verilog, and Verilator. However, some are under active de-
velopment like the RISC-V toolchain, LiteX, etc. Keeping

track of these dependencies during development and deploy-
ment previously had been through text files and shell scripts
that are tedious to maintain and potentially introduce un-
wanted platform dependency. As mentioned above, Docker
allows us to track dependencies in a platform-independent
manner. In addition to capturing dependencies, Docker is
closely tied in with the CI servers, and automatically builds
images with new dependencies as needed.

There are several other open source tools that perform
parts of the pipeline above really well like Ansible, Chef,
Salt, Puppet, Nix, etc. However only a few of them play well
with existing continuous integration servers.

With Docker, one just lists all the dependencies in one file
(typically named Dockerfile), and the file is usually placed in
the root directory of the repository. Upon changes to this file,
a typical CI server can be configured to rebuild a new image
with all the dependencies. Docker is able to containerize the
built image and run unit tests, integration tests, and hardware
tests within this container. These containers are ephemeral:
Docker creates a new one for the next round of tests. If
one wants to introspect the tests, it’s possible to login into
the container to view the results and browse the directory
structure. A typical CI system archives the results (in our
case, FPGA bitstreams and executables, for retrieval and
deployment). An example of the Dockerfile can be found
here [9].

Another feature of Docker is that the built images can
also be deployed on servers running remotely. This has it’s
caveats, but has potential to ease deployment in the field.
Some teams have started using Docker in this manner [10].

Continuous Integration Deployment
CI servers and services tend to ping version control servers

to look for changes committed on the repositories. Upon
detecting changes to source code, they can be configured
to do several tasks. This configuration is typically done
through YAML (.yml) files. Each change in the codebase
can be setup to trigger a “pipeline” (a series of tests that can
be arranged in “stages”), as shown in Fig. 3.

As mentioned earlier in the paper it is up to the developer
or the team to structure the tests in a meaningful sense. As
it doesn’t make sense to synthesize code that doesn’t pass
unit tests the “pipeline” can be configured to halt in case of
a failure in the earlier stages.

The .yml files are expressive enough to capture rules for
setting up stages, environment variables (to setup the tests),
shell commands, and storing resulting artifacts (like executa-
bles and bitstreams).

SUCCESSES
So far we believe we have enjoyed successes in a variety

of forms.

• All dependencies captured in one place. This was previ-
ously softly maintained through a text file. With advent
of Docker, this is just as easy as having Dockerfile (a
single file with instructions to install all dependencies)
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Figure 3: CI pipelines.

under version control, which then can reproducibly
build the development/deployment environments.

• New features are always checked to see if they inad-
vertently break old features, shortening the time-to-fix,
and particularly avoiding the need to spend precious
machine-study time finding and fixing simple bugs.
When a contributor adds a new feature to a shared code-
base, the changes can break any of the unit tests, inte-
gration tests, and hardware tests. Having hardware in
the loop ensures that application, infrastructure, and
integration code are all tested realistically ahead of time
before the code arrives in the production environment.
We have found this to be a huge relief.

• Single reproducible setup accessible to all engineers.
Hardware-in-loop provides at least one production-like
test setup for every engineer. This is arguably superior
to an engineer-specific setup which is accessible to only
one engineer, when it comes to deployable code.

• Ease of keeping up with changes in dependencies.
When a version of e.g., iverilog or Verilator has
changed, testing the entire codebase against this can be
as simple as creating a new branch in version control,
changing the Dockerfile to point to a later version, and
committing to the codebase. This automatically, re-
builds the dependencies, and tests the code base against
the changes, and keeps the image rebuilt with depen-
dencies for future uses.

CHALLENGES
Having real hardware in the testing loop comes with its

own special and exciting challenges.

• Reality of managing hardware: Our use case mandates
that the machine running CI software communicates
with hardware over interfaces like USB, Ethernet, PCIe,
etc. When a new device gets added, removed, or un-
plugged by mistake, the CI software should be made
aware so that the tests are run smoothly. As we expand
our test setup to various projects, and platforms, we
are starting to look into some creative ways to manage
hardware through forms of abstractions.

• Getting locked into CI providers: So far we have cho-
sen to self-host with open-source git hosting and CI
software provided by Gitlab. However, not all features
of Gitlab directly translate to other CI suppliers, includ-
ing commercial hosting providers. While using any
software, it is easy to get used to exclusive features,
eventually losing portability to other platforms.

• Perceived difficulty in setting up the CI framework. The
number of features and control knobs of a “modern” CI
system are immense. They were designed to maintain
and deploy large software packages with several depen-
dencies across various platforms simultaneously. The
documentation can seem large, yet lacking at the same
time. That being said, we found it easy to get simple
tasks up and running in a reasonable amount of time.

• Running the tests locally. CI tools provide limited mech-
anisms to run the same exact stages of the pipeline
locally on a developer’s machine. They seem to be
working on it, but it’s not without its quirks.
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FUTURE PLANS
Considering the challenges above, we have our eyes open

for better ways to produce reliable software-firmware com-
binations for deployment. CI and Hardware-In-Loop tests
only bring us closer to that goal.

Dependency Management
We believe that dependencies can be installed in an identi-

cal way on both the local and remote machines even without
containerization tools like Docker that make use of processes
running in a container or a virtual machine. New package
managers and operating systems are being developed that
test, run and deploy code by just altering the run-time envi-
ronment to point to the new dependencies. These tools also
cleanly provide a way to move back and forth between the
old state (in case of failure) and stay in the newly built state
(in case of success). GNU Guix and Nix are such package
managers.

These package managers also provide a CI mechanism
which are more sophisticated, see [11].

Other features we envision covering in the future within
the CI framework are automated generation of documenta-
tion and tracking metrics (such as code coverage) for test-
benches.

CONCLUSION
The adoption of a CI process for the development of ac-

celerator instrumentation has shown to have great benefits.
Tests and verification of integrated designs are now auto-
mated, decreasing the cognitive load on the developers and
guaranteeing a systematic verification of changes several
times a day, as soon as changes are made to any part of our
code base designs. Other features such as the automatic
generation of artifacts (in the form of bitstreams for our
FPGA builds) have proven to be useful for our controls col-
laborators, who are not necessarily familiar with the FPGA
bitstream generation process and who would like access to
those while developing software.

The CI framework, including hardware-in-the-loop tests,
has been successfully deployed at LBNL. Many of the com-
ponents used in that setup, along with libraries and hardware

designs used in LLRF applications have been published un-
der Open Source licenses and can be found here [12].
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